Bluetooth-Based Sensor Networks

Philippe Bonnet, Allan Beaufour, Mads Bondo Dydensborg, Martin Leopold
Department of Computer Science
University of Copenhagen
bonnet@diku.dk, beaufour@diku.dk, madsdyd@diku.dk, leopold@diku.dk

Abstract

It is neither desirable nor possible to abstract sen-
sor network software from the characteristics of the
underlying hardware components. In particular the
radio has a major impact on higher level software.
In this paper, we review the lessons we learnt using
Bluetooth radios in the context of sensor networks.
These lessons are relevant for (a) application design-
ers choosing the best radio given a set of requirements
and for (b) researchers in the data management com-
munity who need to formulate assumptions about un-
derlying sensor networks.

1 Introduction

Sensor networks are emerging as the platform of
choice for a new generation of monitoring applica-
tions. Unlike traditional computing platforms, sensor
networks are application specific [4]. An important
part of developing a sensor network infrastructure is
thus to choose, or possibly design, the hardware and
software components that will fit the application re-
quirements.

A key component in a sensor network is the radio: it
impacts not only performance and energy consump-
tion but also the network topology and software de-
sign. The radio actually impacts the assumptions
underlying the design of software components such as
data dissemination or in-network processing services.
In this paper, we report on the lessons we learnt using
Bluetooth radios in the context of monitoring appli-
cations.

Let us first motivate our focus on Bluetooth. It was
designed as a cable replacement technology with an
emphasis on interconnecting devices from different
vendors. So why consider it in the context of sen-
sor networks? Bluetooth is a spread spectrum radio,
like the radios used in the WINS prototypes from
UCLA [14] or the new IEEE 802.15.4 standard [16].
Such radios are resilient to interferences, which is a
desirable property for many applications (notably in

SIGMOD Record, Vol. 32, No. 4, December 2003

the free 2.4 GHz band). Moreover, the mass pro-
duction of Bluetooth components ensures both ro-
bustness and decreasing costs. Bluetooth is thus a
reasonable option when designing a sensor network,
but:

e What is the impact of Bluetooth on the network
topology?

e What is the impact of Bluetooth on the applica-
tion software?

e What is the impact of Bluetooth on performance
and power consumption?

These questions are relevant for any kind of radio.
They are important when designing a sensor network
in the context of a given application: Given the appli-
cation requirements, what is the best radio available?
Today, Bluetooth is an alternative to the broadcast
radio embedded in the Berkeley motes. Tomorrow,
radios following the 802.15.4 standard will be an-
other option. Conversely, these questions are rele-
vant when developing (application independant) data
management services for sensor networks: Given a
radio component, what is a consistent set of assump-
tions for the data management service? Indeed, it
is neither desirable (from an resource usage point of
view) nor possible to abstract software components
from the characteristics of the underlying hardware
components.

We focused on Bluetooth-based monitoring applica-
tions in the context of the Manatee project at Univer-
sity of Copenhagen [13]. Our goals were (i) to assess
the strengths and limitations of Bluetooth in the con-
text of sensor networks, and (ii) to characterize the
monitoring applications for which Bluetooth is well
suited. We chose a pragmatic approach based on ex-
periments with actual Bluetooth devices. We give a
short description of the relevant aspects of Bluetooth
and of the devices we used in Section 2.

This paper makes the following contributions, based
on the lessons learnt from the Manatee Project ([9],

(2], [8]):

35

36

e We describe the features of Bluetooth radios that
are relevant for sensor networks, both from a
hardware and a software viewpoint;

e We describe the impact of Bluetooth on sensor
networks, both from a functionality and a per-
formance viewpoint;

e We present the classes of applications for which
Bluetooth is well suited.

2 Bluetooth Radio Component

A Bluetooth radio component is composed of hard-
ware (the radio front-end together with a micro-
controller) as well as software (the Bluetooth stack).
In this Section, we describe the Bluetooth radios we
used for our experiments. We then discuss the fea-
tures of Bluetooth that are relevant for sensor net-
works.

2.1 Bluetooth Hardware and Software

We experimented with devices representing two dif-
ferent design options for the Bluetooth hardware ':

e Single-chip: The Bluetags developped by a
danish start-up [11], are equipped with Bluecore:
a single-chip from Cambridge Silicon Radio
(CSR) integrating an RF transceiver, baseband
circuitry and a proprietary 16-bit microcon-
troller (XAP2) [12] running the entire Bluetooth
stack. Each device has 2 KiB2 EEPROM mem-
ory for data storage and 512 Kib flash memory
for embedded applications (the bluetooth stack
and possibly additional software components).

e Separate chips: The BTnodes developped by
ETH Zurich in the context of the Smart-Its
project [15] are based on (i) a microcontroller
(Atmel ATmegal28L — an 8 bit microcontroller
clocked at 7.4 MHz, with 4 KiB on chip mem-
ory and an external memory chip of up to
64 KiB) connected to (ii) a Bluetooth module
(Ericsson ROK 101 007 - including both the
RF transceiver, baseband circuitry and a micro-
controller running the lower layers of the Blue-
tooth stack).

The single chip approach is very attractive as it
promises reduced cost of production and reduced en-
ergy consumption. The two chip approach is flexible;

ISee Xilinx’s tutorial [18] for a complete description of the
design space
2EIC standard 60027-2 defines KiB as 1024 bytes [3]

it allows experimenting with changing generations of
radio hardware and it allowed us to focus on the Blue-
tooth features that are relevant for sensor networks.
While the lower layers of the Bluetooth stack focus on
the spread spectrum radio, the higher layers provide
a set of abstractions that make it possible to inter-
connect different devices from different vendors [6].
This is not a property of paramount importance in
sensor networks tailored to operate together as one
unit. Indeed resources are constrained and should
not be wasted on unnecessary features. It was not
possible to redefine the Bluetooth stack on the single-
chip system from CSR. On the BTnodes, we defined a
stripped down version of the Bluetooth stack: tinyBT
integrated in the tinyOS operating system [5].
TinyBT provides access to a subset of the Bluetooth
standard (its essential features of Bluetooth described
in the next section), which results in flexibility for ap-
plication development (there is no need to conform to
high level abstractions tailored for interoperability)
and reduced footprint (3 KiB for tinyBT as opposed
to hundreds of KiB for the complete stack).

2.2 Bluetooth Features

Bluetooth operates in the 2.4GHz royalty free ISM
band. It uses a Frequency Hopping Spread Spectrum
(FHSS) scheme. Its essential features in the context
of sensor networks can be summarized as follows:

e Device Discovery. In order for two devices to
discover each other, they must be in two com-
plementary states at the same time: inquiry and
inquiry scan. The inquiring device continuously
sends out “is anybody out there” messages hop-
ing that these messages (know as ID packets) will
collide with a device performing an inquiry scan.
The inquiring device repeatedly sends short mes-
sages on different frequencies, while the device
performing inquiry scan listens to one frequence
for a while, before switching to another.

e Connections. Two devices need to be connected
before they can exchange data. When two de-
vices have discovered each other they are able to
connect (they are in the pageable state). One de-
vice is then denoted as the master and the other
as the slave (a slave is following the frequency
hopping sequence dictated by its master).

e Data Exchange. A master and a slave exchange
data as follows. A slave is only allowed to trans-
mit to the master once the master has contacted
it. Data is transmitted in slots of a fixed size of
625 ps : master and slave send alternatively.

SIGMOD Record, VVol. 32, No. 4, December 2003

e Star Topology. There are at most 7 slaves con-
nected to a same master. There have been an-
nouncements about Bluetooth support for multi-
hop network topologies where nodes can act both
as masters and slaves (scatternets). But to-
day, there is no product providing such support.
We experimented with Bluetooth-based multi-
hop networks using a dual-radio approach [9]:
we equipped the BTnodes with two Bluetooth
radios.

e Power Saving Modes. Bluetooth supports two
power saving modes. In park mode, a slave has
its radio turned off. It needs to reconnect to the
master in order to exchange data. Alternatively
a connection can be set in sniff mode: the con-
nection between slave and master remains open
and both devices can turn off their radio as long
as they synchronize at given points in time.

We refer the interested reader to [6] for a complete
description of Bluetooth.

3 Impact of Bluetooth

Both the features and the actual performances of
Bluetooth radio components have an impact on ap-
plication design. We review in this section the lessons
we learnt in the Manatee project. Note that perfor-
mance results only reflect the current generation of
Bluetooth hardware. We emphasize the areas where
we expect better hardware engineering to provide sig-
nificant improvements.

3.1 Features

Let us first discuss how the Bluetooth features de-
scribed in Section 2.2 impact application design.
Separated Channels

Bluetooth’s frequency hopping scheme guarantees
channel separation as opposed to the shared chan-
nel of broadcast radio components. Once two sensor
nodes are connected, they exchange data without in-
terferences from neighbor nodes. Separated channels
enable thus very dense deployments. It also allows
application designers to design their software with-
out the unknown of interferences. This is particu-
larly relevant in the context of aggressive power sav-
ing strategies where the sensor node is only awake
for short periods of times during which interferences
could have unpredictable consequences.

Channel separation requires sensor nodes to establish
a connection before exchanging data. Many sensor
network algorithms assume that a sensor node has

SIGMOD Record, Vol. 32, No. 4, December 2003

some knowledge about its neighbors. Getting this in-
formation does not come for free using Bluetooth. It
first requires discovering neighbor nodes, then estab-
lishing connections to each of them and then sending
and receiving data. An improvement would consist
in exchanging data during the device discovery phase,
but this is not allowed by the Bluetooth standard.
Connection Graph

In a multihop network, the fact that sensor nodes
need to establish a connection before they can send
data means that a connection graph has to be estab-
lished and possibly maintained. Such a connection
graph is not fully connected. It is a restriction on the
set, of possible network routes, but it actually pro-
vides a form of topology control. Recent work has
shown that topology control was an efficient power
management strategy [19]. Topology control is also a
necessary feature when managing a routing tree (as
in TinyDB for exemple). In [9], we presented an algo-
rithm for establishing a connection graph in a multi-
hop network of dual-radio devices. There is however
a need for efficient topology control algorithms on top
of separated channel radios.

A question is whether a connection graph can be es-
tablished and then maintained over the lifetime of
the sensor network or whether connections should be
limited to a few data exchanges. This depends on
how efficient connection establishment and connec-
tion maintenances are on actual Bluetooth devices.
We address this issue in the performance sub-section.
Power Management Strategies

The fact that connections are established between
sensor nodes can also be used to define an aggres-
sive radio driven power management strategy where
a sensor node is turned off as long as there is no data
available on any connection. We described the im-
pact of such a power management strategy on the
tinyDB data management service in [9]. Compared
to the native application-driven strategy of tinyDB
(where the application defines the sleep period of the
sensor nodes), the radio driven approach guarantees
that no message will be lost because the sleep period
of neighbor sensor nodes overlap (in addition channel
separation guarantees that no messages will be lost
because of interferences).

Such a power saving strategy can be implemented
using the sniff mode of the Bluetooth radio. How-
ever, Bluetooth’s frequency hopping scheme requires
a master and a slave to synhronize frequently. In sniff
mode, the longest period during which devices can
sleep is 40 seconds. This means that the sniff mode
is not optimal for scenarios where devices could sleep
for minutes or even hours.

Layered Stack

37

38

It would be desirable for applications to have access
to the timing information managed by Bluetooth’s
baseband circuitry 3. Also, applications could use
information related to link management (acknowl-
edgements of message transmission or information
about message retransmissions). However, the lay-
ered structure of the Bluetooth stack prevents such
cross layers optimizations.

3.2 Performances

We conducted experiments with the Bluetags and
BTnodes described in Section 2.1. Here are the main
lessons we learnt.

Device Discovery is Slow

Figure 1 shows the distribution of inquiry time ob-
tained with a BlueTag device. The experiment du-
plicates the conditions of the experiments created by
Kasten and Langheinrich [7]: two bluetooth devices
are separated by one meter; 1500 inquiries are per-
formed (10 seconds max) and we measure the time
it takes for the devices to discover each other. The
graph traces the number of times a device was discov-
ered as a function of time. The result we obtain with
the BlueTag is similar to the ones we have obtained
with various bluetooth devices [8].

80 T

HH”\MMW mlnfem e
4 6 8

10

40

count

20 -

time (s)
Figure 1: Inquiry Time Distribution (BlueTag)

The specification recommends a total inquiry period
of 10.24 s to discover all devices in the neighborhood.
Our study shows that most devices can be discovered
within 5 seconds. This is too slow to perform device
discovery whenever data has to be transmitted. This
is also means that managing the connection graph
takes a significant time (as new neighbor nodes must
be discovered). We showed, in [2], that the distri-
bution of inquiry time is dictated by the Bluetooth
standard.

3The baseband circuitry manipulates timing information as
it is responsible for synchronizing frequency hopping

Additional experiments, documented in [8], showed
that inquiry time remains constant as the distance
between two devices increase. As a result we can
expect devices to discover each other at a distance of
at least 20 meters.

Keeping Connections Opened is Expensive
We measured current draw and voltage* for different
regimes of the BTnodes. Figure 2 summarizes our
results.

L1 O

B 4

RS
SR

A
AR

0

Odntn mechange bil
Boommi

Whiion

Odatn mechange on b0
[commi

B0 inqury s=an
Obi0ingary

Wbl an

' |Onod= on

Sing= Rado Singl= Aado Dzl Reda

Figure 2: Energy usage breakdown. The graph
presents sensor nodes with one radio (bt0) perform-
ing inquiry and inquiry scan as well as a dual-radio
node (with bt0 and btl). In the legend, commO0 and
comm]1 denote connections established on bt0 and bt1
respectively.

Our first goal was to measure energy consumption for
an idle BTnode (in black on the figure). According
to the manufacturer [1], the 8 MHz microcontroller
can use up to 12 mA at 5 V (60 mW) in idle sleep
mode. With a slightly lower clock frequency, we ob-
serve a lower energy consumption (about 46 mW). In
the dual radio case, the base energy consumption is
80 mW. This is mostly due to the (unused but turned
on) led on the additional Bluetooth radio, which con-
sumes about 22 mW, as well as the voltage regulator
and the serial voltage level converter.

Turning a Bluetooth radio on consumes about 30 mW
extra (in idle mode). Performing an inquiry scan re-
quires an additional 9 mW. Performing an inquiry
costs approximately 100 mW: an order of magnitude
more than performing an inquiry scan.

Nodes use about 136 mW to maintain connections.
Additional experiments showed that putting a con-
nection in sniff mode saves a marginal 5 mW. This
suggests that some optimizations might have been
missed in the design of the Bluetooth module.

4We used an input voltage of approximately 5V. We ob-
served that voltage varied slightly during the experiments. We
thus decided not to assume constant voltage to compute the
energy consumption.

SIGMOD Record, Vol. 32, No. 4, December 2003

Once a connection is established sending or receiving
data consumes an additional 65 mW when transfer-
ring at 6 KiB/sec when using a single radio and 5 mW
for each radio when transferring 10 packets per sec-
ond.

Throughput is high

We measured throughput on point-to-point connec-
tion between master and slave using the BTnodes.
For payloads of 20 bytes, we achieve a throughput
of about 5 KiB/sec. For the maximum payload of
668 bytes, throughput is significantly higher: it varies
from 6 to 35 KiB/sec. Here, the number of slots used
for transmission and the resistance to noise have a
significant impact.

Note that the throughput we achieve is far from the
theoretical max, of up to 90 KiB/sec. First, the Tiny
Bluetooth stack we used for these experiments ac-
cesses the Bluetooth module via the Btnode’s UART:
the maximum throughput supported by the UART is
approximately 45 KiB/sec. Second, the Bluetooth
module generates superfluous messages that take up
bandwidth on the UART interface (hardcoded Eric-
sson string events). These can be optimized away on
future generations of the Bluetooth modules.

The master is responsible for allocating the channel
bandwidth for each slave in a multipoint connection.
We setup the master to connect to a number of slaves
and send packets in round-robin order on each con-
nection. We measured the bandwidth on each con-
nection. It would be expected that the total band-
width stays the same and that each slave receives a
fair share. Table 1 shows that the aggregate band-
width drops considerably but that each slave receives
a fair share of that bandwidth. It is peculiar that the
aggregate bandwidth drops as much as 50 %—the
lower layers of Bluetooth allow the master to switch
between slaves without any additional overhead. The
Bluetooth modules wastes in-air slots by not sending
meaningful data.

1 | 2 | 3
Aggregate | 38.1 KiB/s | 25.4 KiB/s | 19.3 KiB/s
Pr. slave | 38.1 KiB/s | 12.7 KiB/s | 6.4 KiB/s

Table 1: Throughput for an multipoint asymmet-
ric DM3 connection, aggregate and individual band-
width

Madden et al. [10] write that it is reasonable to expect
that the Berkeley motes (equipped with the same mi-
crocontroller as the BTnode) transmit approximately
500 bytes per second. The BTnodes thus achieve a
throughput, which is between one and two orders of
magnitude higher for point-to-point connections and

SIGMOD Record, Vol. 32, No. 4, December 2003

at the very least a factor of two higher for multipoint
connections.

4 Bluetooth-Based Monitoring
Applications

Our work shows that Bluetooth is well suited for ap-
plications with the following characteristics:

e Network Topology. Bluetooth is best suited
for point-to-point connections. In case the ap-
plication requires a sensor network composed of
large clusters of sensor nodes, it is necessary to
adopt a dual-radio approach to construct a Blue-
tooth multi-hop network.

e Lifetime All in all, a single-radio BTnode uses
approximately 50 mW when idle and 285 mW
when communicating, while these numbers are
up to 80 and 450 mW for a dual-radio BTnode.
If we compare with the Mica motes from UC
Berkeley, these numbers are high. Indeed, Mad-
den et al. [10] report 10 mW for for an idle node
and 60 mW when communicating.

The BTnodes consume five times more energy
than the Mica motes doing nothing! This is due
to the fact that the microcontrollers are placed
in different sleep modes. The Mica motes favour
power saving strategies where the applications
manage themselves the time they spend in sleep
mode. This way, the microcontroller can be put
to sleep in power save mode, where only the ex-
ternal clock can send wake-up signals, i.e., the
motes do not get data from sensors or from other
nodes while the MCU is in sleep mode. The
power save sleep mode is the most energy effi-
cient.

The BTnodes favour applications that are in
sleep mode until (unpredicatable) events are re-
ceived on the Bluetooth radio or the sensors.
This precludes the use of the power save mode
because events generated by the Bluetooth radio
would be ignored. The microcontroller is best
put in idle sleep mode until an event is received
from the UART or from the clock. The idle sleep
mode is however less energy efficient than the
power save mode. We can estimate to 8 days the
life expectancy of a BTnode in idle sleep mode
with two standard AA batteries.

Connection maintenance consumes a lot of en-
ergy, both on master and slave. Using the sniff
mode does not make a significant difference.

39

These results suggest that connections should
only be established for short periods of time.

e Payload A Bluetooth radio component enables
a high throughput. As a consequence, it is pos-
sible to transmit large payloads (including audio
and images).

These remarks suggest that the Bluetooth radio com-
ponents are best suited for:

1. Applications involving a large number of mobile
devices disseminate data between small clusters
of fixed sensor nodes [2], e.g., hikers spreading
sensor data across a national park (that cannot
be covered by a single cluster) or zebras being
monitored in the savanna [17].

2. Applications that are active over a limited time
period, with few unpredictable bursts of very
heavy network traffic. An example of such ap-
plication could be a sensor network deployed to
secure a building in a mounted operation in ur-
ban terrain. Such a network could have a life
expectancy of up to a week, operating in sleep
mode until individuals are detected in which case
as much situational information as possible could
be obtained (including possibly images or sound
on a suite of point-to-point connections).

Note that progresses in the engineering of Bluetooth
modules will probably not provide the orders of mag-
niture improvements that would be needed to em-
bed a Bluetooth radio component in a sensor network
whose life expectancy is larger than a few months.

5 Conclusion

Our work shows that Bluetooth has some advantages
and many limitations in the context of sensor net-
works. The main advantage of Bluetooth is its sup-
port for separated channels, which avoids interfer-
ences and enables radio-driven power management
strategies. There is a need for efficient topology con-
trol algorithms on top of separated channel radios.
Another very interesting aspect of Bluetooth is its
integration in single-chip systems. Further work is
needed to investigate the opportunities of such sys-
tems.

The Bluetooth standard is neither flexible (layered
approach, no exchange of data during device discov-
ery, no support for multihop networks), nor perfor-
mant (device discovery is slow, frequency hopping
requires frequent synchronizations between master
and slaves). In addition, the current generation of

40

Bluetooth radios does nor provide satisfactory per-
formances (high cost for connections, throughput loss
on multipoint connections). The 802.15.4 standard
promises to address some of these issues. Our work
provides a baseline to evaluate future 802.15.4-based
sensor networks.

References

[1] Atmel home page. http://www.atmel.com/.

[2] Allan Beaufour, Martin Leopold, and Philippe Bonnet.
Smart-tag based data dissemination. In Proceedings of
the First ACM International Workshop on Wireless Sen-
sor Networks and Applications (WSNA-02), pages 68-77,
New York, September 28 2002. ACM Press.

[3] International Electrotechnical Commision. Letter sym-
bols to be used in electrical technology - part 2: Telecom-
munications and electronics. IEC standard 60027-2, 2.nd
edition, 2000.

[4] Deborah Estrin, Ramesh Govindan, John Heidemann,
and Satish Kumar. Next century challenges: scalable co-
ordination in sensor networks. In Proceedings of the fifth
annual ACM/IEEE international conference on Mobile
computing and networking August 15 - 19, 1999, Seattle,
WA USA, pages 263-270, 1999.

[5] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David E. Culler, and Kristofer S. J. Pister. System ar-
chitecture directions for networked sensors. In Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS-00), pages 93-104, 2000.

[6] Charles F Struman Jennifer Bray. Bluetooth Connect
Without Cables. Prentice Hall, 2001.

[7] Oliver Kasten and Marc Langheinrich. First experiences
with bluetooth in the smart-its distributed sensor net-
work. In Workshop on Ubiquitous Computing and Com-
munications, PACT, 2001.

[8] Martin Leopold. Evaluation of bluetooth communication:
Simulation and experiments. Technical report, DIKU
02/03, 2002.

[9] Martin Leopold, Mads Dydensborg, and Philippe Bonnet.

Bluetooth and sensor networks: A reality check. In Ist

ACM Conference on Sensor Networks, 2003.

Samuel R. Madden, Michael J. Franklin, Joseph M.

Hellerstein, and Wei Hong. The design of an acquisitional

query processor for sensor networks. In SIGMOD, 2003.

BlueTags Home Page. http://www.bluetags.com/.

Cambridge Consultants Home Page.

http://www.cambridgeconsultants.com/pd_xap_reduced.shtml.

Manatee Project Home Page.
http://www.distlab.dk/manatee/.

G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5):51-58, 2000.
Smart-its home page. http://wuw.smart-its.org.

IEEE 802.15.4 Standard.
http://www.ieee802.0org/15/pub/tg4.html.
http://www.ee.princeton.edu/ mrm/zebranet.html.
Xilinx’s Bluetooth Hardware Tutorial.
http://www.xilinx.com/esp/bluetooth/system_design/.
Jerry Zhao and Ramesh Govindan. Understanding packet
delivery performance in dense wireless sensor networks. In
1st ACM Conference on Sensor Networks, 2003.

SIGMOD Record, VVol. 32, No. 4, December 2003

