Understanding the Semantics of Sensor Data*

Murali Mani
WPI, Computer Science Dept
mmaniQcs.wpi.edu

Abstract

Our system architecture to manage sensor data is de-
scribed. Our data mining applications require past
history of the sensor data. Therefore, unlike most
present systems that focus on streaming data, and
cache a small window of historic data, we store the en-
tire historic data. Several interesting problems arise
in these scenarios. We study two of them: (a) Given
that a sensor can send data corresponding to its
current configuration at any particular instant, how
do we define the data that should be stored in the
database? (b) Sensors try to minimize the amount of
data transmitted. Also there could be data loss in the
network. So the data stored will have lots of “holes”.
In this case, how can an application make sense of the
stored data? In this paper, we describe our approach
to solve these problems that enables an application
to recreate the environment that generated the data
as precisely as possible.

1 Introduction

In recent years, pervasive computing, a scenario
where a large number of sensors, often invisible, are
distributed in our surrounding environment, is be-
coming more and more realistic. Such sensor systems
find numerous applications in our every day life: net-
work traffic management [2, 5], fraud detection [5],
medical applications for monitoring heart beat, blood
pressure etc and subscribing medication [3], financial
analysis [14], warnings in response to environmental
changes, like warnings to a chemical leak, warnings
in response to smoke detection [3], building moni-
toring [9], monitoring wild life habitats [7, 18], and
monitoring vehicle traffic [15, 13].

In our lab, we have two projects that use sensor

*This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. 0086116, 0085773,
and 9817773. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation.

SIGMOD Record, Vol. 32, No. 4, December 2003

systems. In the bus tracking project [17], we have
equipped the buses that run on the UCLA campus
with different kinds of sensors: GPS sensors give lo-
cation, velocity sensors give the speed of the bus, di-
rection sensors give the direction the bus is moving
etc. The data is collected from the buses every sec-
ond and is stored in a database. The user can ask
queries on streaming data such as: at this instant,
which buses are running and their locations. We can
also perform mining on the stored data for predicting
the time it will take for the bus to go from point A
to point B based on past patterns, and factors such
as the time of day, the day of the week, the week in
the quarter, and the driver.

In the Smart Kindergarten project [16], we create
a “smart” classroom equipped with different kinds of
sensors such as seismic sensors, audio and video sen-
sors, and active badges. Information from these sen-
sors are collected continuously. This gives informa-
tion regarding the activities of the kids, the environ-
mental conditions; it enables us to learn more about
behavior of kids as what environmental changes
caused what response in the kids, what stories at-
tracted attention of the kids etc. Also the data col-
lected is used by the speech recognition group to build
models of speech recognition for the kids.

An important question in this scenario is how do
we make use of the sensor data effectively. Different
models have been proposed for sensor data: one of the
most widely studied models is considering the sen-
sor data as streaming data, and not storing it. This
model is used in [1, 8, 20, 19]. It is suited for several
applications where the operators are such that we do
not need to store the data, and the amount of data
generated is enormous and it is not feasible to store
the data at the rate at which it is generated. Further,
this model provides new and challenging problems in
defining operators for streaming data, query process-
ing, optimization, data mining algorithms, comput-
ing approximate results etc [10, 5].

However our applications do not fit the stream-
ing model for sensor data: for our bus project, the
amount of data generated is “small”; in a day, the

28

29

amount of data generated is about 5 MB. Further
there are several operators for our applications for
which the streaming model does not suffice: to de-
termine patters for how much time it takes to com-
mute from point A to point B, developing models for
speech recognition of children, processing the videos
of kids etc. We therefore store the sensor data.
However, storing sensor data gives rise to numer-
ous issues, we address two of them in this work. First
is what data should be stored? Consider a tempera-
ture sensor: should we store data every second, every
minute, or every hour? Consider a video sensor that
can send videos at multiple resolutions: what is the
resolution at which the video should be stored? Sec-
ond is how do we understand the semantics of stored
data. Consider data stored from a temperature sen-
sor, assume we have temperature values stored at
9:00am as 68, 9:30 am as 69 and 10:30 am as 69.
What happened at 10:00 am? Was there a data
loss? Or is the data stored when temperature is be-
low 70, and at 10:00 am, the temperature was more
than 707 Our work tries to answer these questions.
A data value to be stored is decided by an appli-
cation, i.e., current applications in the environment
specify what data will be interesting to future appli-
cations. We also store the query that generated the
data along with the data, this enables a later applica-
tion to recreate the environment when the data was
generated, so it can make effective use of the data.
There are models which try to store the sensor data
also. In [3], the system may optionally store the sen-
sor data. However a later application cannot under-
stand the semantics of the stored data. In the above
example of the temperature sensor, an application
will understand the temperature at 10:00 am as null.
Another approach to store the sensor data is provided
in [21]. Here the authors assume a fixed amount of
storage, so the older data is stored at coarser gran-
ularities, and they try to answer aggregate queries
over the data. Our work in this paper assumes that
we can store all the data, and our focus is on more
general queries and not just aggregate queries.

1.1 Qutline of this paper

The paper is structured as follows. In Section 2, we
describe our overall system architecture: servicesthat
exist in the environment, and how an application can
find these services and use them through our sylph
middleware. In Section 3, we describe the architec-
ture of our data store, define what data is stored in
the database, and how the query is stored with the
data, and in Section 4, we describe example applica-
tions that can be supported by our system.

2 System Architecture

In our lab [11], we are building a generic system for a
sensor environment. The overall system architecture
is shown in Figure 1. We will describe the different
components of our system: Services, Sylph Mid-
dleware, Applications and Data Store.

Figure 1: System Architecture illustrating Services,
Sylph Middleware, Applications, and Data Store

DBApplication) .-~

2.1 Services

A service is any “service” that can provide data to an
application. For example, a temperature service pro-
vides temperature data, a location service provides
location information [4] etc.

There are two kinds of services: Sensor Service
and Fusion Service. A sensor service provides data
corresponding to a particular semsor. An example
is the temperature service that provides data corre-
sponding to a temperature sensor. A fusion service
provides data corresponding to a “higher level ser-
vice” using data from other sensor and fusion ser-
vices. An example is the location service that uses
the data (signal strengths) from different sensor ser-
vices (base stations) to determine the location of a
person. The two services can be defined in terms of
how they obtain the input data as follows:

FusionService :=
SensorService :=

(FusionService | SensorService)*
sensor

Associated with every service, there is a software
component called ServiceModule!. The ServiceMod-

LA ServiceModule could be associated with multiple ser-
vices also. For example, all the sensors on one bus are associ-
ated with one ServiceModule. However, for easier understand-
ing, we define a separate ServiceModule for every service.

SIGMOD Record, Vol. 32, No. 4, December 2003

ule hides the service implementation details and pro-
vides a uniform interface for all services for an ap-
plication to use. This standard interface allows an
application to (a) retrieve the schema for the data
produced by the service (b) retrieve attribute values,
such as make of sensor, current sampling rate etc (c)
set attribute values, such as set the sampling rate, set
the resolution for a video service etc, and (d) retrieve
values from the service and send it to the application
through a push-based interface. Here, the applica-
tion will issue a query in the Sylph Query Language
discussed in the next section.

In short, the ServiceModule acts as the proxy for
the service associated with it. It receives requests for
data and to set attributes from different applications,
and decides how they should be handled. Our Ser-
viceModule is similar to the Sensor Proxy described
in [8], however our services can also be fusion services.

2.2 Sylph Middleware

The sylph middleware is the means of communication
between the application and the sensor environment,
and between service modules and the data store. It
provides three capabilities: (a) It maintains the cur-
rent list of service modules in the environment. (b)
An application can see this list, and issue queries in
Sylph Query Language to any service module. (c)
Sylph ensures that there is a schema corresponding to
any service module in our data store, so that the data
corresponding to this service may be stored. If there
is no schema corresponding to a service module, it
issues appropriate DDL (Data Definition Language)
statements to create the schema for this service.

2.3 Applications

Applications make use of the data generated by ser-
vices. They can be user applications or system appli-
cations (those provided by the system). Applications
see the list of services available through the sylph
middleware, and send queries and obtain data from
services. Also, they can store data obtained or ask
complicated queries requiring joins of data from mul-
tiple services through two system applications pro-
vided: DBApplication, and Query Processor.

o DBApplication provides the interface for the ap-
plication to store data it receives from services.
An application can request DBApplication to
store data corresponding to a service. DBAppli-
cation also provides capabilities for the applica-
tion to retrieve stored data from the database; it
provides synchronized display of multiple stored
streams through labView [6].

SIGMOD Record, Vol. 32, No. 4, December 2003

e Query Processor is similar to the query proces-
sors provided by [9, 20, 3, 1]. The Sylph query
language is limited in its functionality, it can
only retrieve data from one service. Some ap-
plications might want to join the data from mul-
tiple services; an application requests data when
temperature and humidity are both greater than
80. We might not have a service that can answer
this query directly. Similarly some queries might
be too complicated, such as the correlated ag-
gregate query [5]: select days when the average
temperature is more than 10F greater than the
average temperature of the previous day. Such
queries are handled by the query processor.

2.4 Data Store

Data Store is described in detail in the next section.
An application can request DBApplication to store
some of the data it receives from a service in the
data store. The data store consists of a relational
database for storing data from the service, queries
and some metadata about the queries, and a unix file
system for storing multimedia data.

3 Data Store Architecture

In this section, we describe our data store architec-
ture, and the semantics of stored data: when is data
stored, and how we store the query with the data.
We start with the Slyph Query Language.

3.1

Sylph Query Language supports three kinds of
queries.

Sylph Query Language

e Obtain Attribute Values: get (attr) for (service)
attr is the attribute name, and service is the
name of the service.

o Set Attribute Values: set (attr) value (val) for
(service)
Here val is the value to be set for attr.

o Obtain Data Values: read
(service) every (interval)
[start (startTime)] [end
(predicateExp)]

Here (colList) is the list of columns whose values
the application is interested in, interval gives
how periodically the application wants to receive
the data, duration is optional and specifies the
duration for which values are needed, startTime
and endTime are optional and specify the time

(colList) from
[for (duration)]
(endTime)] [where

30

31

when the service needs to start sending data and
stop, and predicateExp is optional and specifies
the condition that needs to be satisfied when
the data should be sent.

Let us consider a few example queries.

1. Obtain temperature data every 30 minutes for 8
hours starting at 9:00 am.
read temp, time from tempService every 30 min
for 8 hrs start 9:00 am

Same as 1, but only when > 75.
read temp, time from tempService every 30 min
for 8 hrs start 9:00 am where (temp > 75)

Same as 2, but only when humidity is > 80.
read temp, time from tempService every 30 min
for 8 hrs start 9:00 am where (temp > 75 and
humidity > 80)

3.2 Stored Data

Let us see what data gets stored in the database.
First, every service whose data can be stored regis-
ters its schema with the database. When the service
registers with sylph, it checks if there is a schema
corresponding to its data; if not, new relation/(s) are
defined to store data corresponding to that service.
For example, the schema corresponding to the tem-
perature service could be one relation with columns
(temp, time, setQueries), where temp is the actual
temperature value, time is when that temperature
value was obtained and setQueries, which we dis-
cuss in the next subsection, is a set of queries that
generated this data.

An application can request data from a service
through sylph. It can also request that this data be
stored. There could be data loss and some data from
the service might not reach the application, but we
assume that there is no data loss from the applica-
tion to the data store. In short, the data stored in
the database at any instant t is a subset of the data
produced by all service modules at t.

Let us consider the example of temperature service.
An application A wants to store the values for the
query: read temp, time from tempService every 30
min for 8 hrs start 9:00 am. The tempService can
sample temperature at a much faster rate, say once a
minute. However the tempService module will send
data every half an hour to A, at 9:00 am, 9:30 am etc,
but not at 9:15 am. Suppose no other application has
requested data from tempService to be stored. The
values stored in the database will correspond to the
data received by A. There could be data loss, and a

temperature value produced at 10:00 am might not
reach A; in this case, the temperature at 10:00 am is
not stored in the database also. We can see that if all
the data produced by all queries is stored in a time
interval [T1,T>], then a later application will see the
same values as all applications during [T3,T5].

3.3 Storing Query with Data

We discussed above what data is stored in the
database so that a later application B sees the same
values as the current applications. However this is in-
sufficient for B to understand the semantics of stored
data. For example, suppose there are temperature
values stored at 9:00 am, 9:30 am, and 10:30 am.
What happened at 10:00 am? B cannot distinguish
whether data was lost, or the predicate was not sat-
isfied. On the other hand, consider the application A
that issued the query: read temp, time from tempSer-
vice every 30 min for 8 hrs start 9:00 am. A knows
that there was data loss at 10:00 am. We provide this
semantics to B by storing the query with the data.

Let us first consider how A can distinguish between
data loss, and that the predicate was not satisfied.
Consider the query: read temp, time from tempSer-
vice every 30 min for 8 hrs start 9:00 am where (temp
> 75). Suppose there are values at 9:00, 9:30 and
10:30 am. We want A to determine whether there
was data loss or whether temperature < 75 at 10:00.
The data values from the service module are of the
form: (dataColumns, time, prevTime). Here data-
Columns is the columns corresponding to the data,
time is the current time stamp and prevTime is the
previous time the predicates were satisfied and data
sent to the application. prevTime helps A to deter-
mine all data losses in the network; unless there are
two consecutive data losses. Suppose the data A re-
ceives at 10:30 am specifies that the previous time the
data was sent was at 10:00 am, then A knows that
the temperature at 10:00 am was > 75, and there was
data loss. If the data A receives at 10:30 am specifies
that the previous time the data was sent was 9:30 am,
then it knows that the temperature at 10:00 am was
< 75. Our solution for B to get the same semantics
as A is as follows:

e Every query is appended with an implicit con-
nectivity predicate. For example, the query read
temp, time from tempService every 30 min for 8
hrs start 9:00 am where (temp > 75) is trans-
lated to read temp, time from tempService every
30 min for 8 hrs start 9:00 am where (temp > 75
and connPredicate).

o We store a “parsed form” of the query in XML

SIGMOD Record, VVol. 32, No. 4, December 2003

as described below. Every query is stored in
a relation Query(querylID,queryText), where
querylD is a unique id for each query, and
queryText is the actual query (with the con-
nectivity predicate). We use XML as it gives
a “convenient parsed form”. A query is inserted
into this relation by the DBApplication, when
an application requests that data corresponding
to this query be stored.

e We have a separate table for storing values for
query predicates. These are stored in a rela-
tion QueryPredicates (queryID, time, Nodey,
Node,, ..., Node,). This can store queries with
atmost n predicates, n is a suitable number cho-
sen. Tuples are inserted into this relation by
DBApplication as data is stored. The value cor-
responding to a Node; for a query) can take
one of four values: true, false, unknown if the
value of predicate with id ¢ in @ is unknown, or
null, if there is no predicate with id ¢ in Q).

o We have a separate relation for storing the val-
ues from the services. The relation for service S
is SRelation (colList, time, setQueries), where
col List is the list of columns corresponding to
this service as described in the schema for this
service, time is the timestamp when a data tu-
ple was generated, and setQueries is the set of
query ids that generated this tuple.

Let us examine our solution in detail. The XML
document corresponding to a query conforms to the
schema given as a regular tree grammar [12] in Ta-
ble 1. The XML document for the Sylph query Q1:
read temp, time from tempService every 30 min for 8
hrs start 9:00 am where (temp > 75) is shown in Ta-
ble 2. When the application requests that data from
@1 be stored, DBApplication stores ()1 in the rela-
tion Query as shown in Table 3 (a). Corresponding to
queryText, we store the XML document in Table 2.

<query id=‘Q1’>
<attrs><attr>temp< /attr>
<attr>time< /attr>< /attrs>
<service>tempService< /service>
<interval>30 min< /interval>
<duration>8 hrs< /duration>
<startTime>9:00 am< /startTime>
<predicates Qid=‘1’ @QlogOp=‘AND’>
<predicate @Qid=‘2">temp > 75< /predicate>
<connPredicate @id=‘3’/ >
< /query>

Table 2: Example Sylph Query in XML

SIGMOD Record, Vol. 32, No. 4, December 2003

Let us examine how data is stored in the other two
relations QueryPredicates and SRelation. DBAp-
plication receives a data tuple to be stored cor-
responding to a query, say (). Let the data tu-
ple received be (val,t,previoust) = (valy,ty,to).
The DBApplication also maintains the previous time
stamp when a data tuple was stored in the database
corresponding to query @, let this be prev.

e Case 1. ty = t; — interval, and prev = ty.
In this case, there is no data loss in the previ-
ous time stamp; also the predicates were satis-
fied. DBApplication inserts (valy,t1,{Q}) into
SRelation, and (Q,t1,predicateValues) into
QueryPredicates, where predicateV alues are
appropriate values for the different predicates.

e Case 2. tg # t;—interval, and prev = ty. Here,
there is no data loss, but the predicates were not
satisfied between (prev,t;). DBApplication in-
serts (vali,t1,{Q}) into SRelation. It also in-
serts appropriate values into QueryPredicates
for time stamps ¢; and when the predicates were
not satisfied.

e Case 3. prev # to. Here, there is data loss
at to. DBApplication inserts (valy,t1,{Q}) into
SRelation. It also inserts into QueryPredicates
values that indicate the data loss at ¢y, and that
predicates are satisfied for ¢;.

Let us consider the sample query (1; the data from
the service is stored in the relation T'empRelation
(temp, time, setQueries). Let us assume that the
temperature is > 75 at 9:00 am, 9:30 am, 10:30 am,
11:00 am, 11:30 am, However, there is data loss
at 11:00 am, and the temperature is < 75 at 10:00
am. The data tuple at 10:30 am will indicate that the
predicates were not satisfied at 10:00 am. Similarly
the data tuple at 11:30 am will indicate that there was
a data loss at 11:00 am. The relations corresponding
to QueryPredicates and TemperatureRelation are
shown in Tables 3 (b) and (c) respectively.

4 Example Applications

Let us examine how a later application can make use
of the stored data. The model used is based on sim-
ple linear interpolation to find out values when data
is not stored. To be more precise, suppose we have
data values corresponding to time instants ¢; and ts,
and t is the earliest time instant between t; and ¢, for
which we have values in the QueryPredicates relation,
and not in the SRelation (that is the relation corre-
sponding to the service data has no value at t). Then

32

Attrs — attrs(Attr*), Attr — attr(PCDAT A),

Query — query(Qid, Attrs, Service, Interval, Duration”, StartTime’, EndTime’, Predicates),

Service — service(PCDATA), Interval — interval(PCDAT A), Duration — duration(PCDAT A),
StartTime — startTime(PCDAT A), EndTime — endTime(PCDATA),

Predicates — predicates(Qid, QlogOp, Predicate™, ConnPredicate),

Predicate — predicate(Qid, (QlogOp, Predicate™) + PCDATA), ConnPredicate — connPredicate(Qid)

Table 1: XML Schema corresponding to a Sylph Query

Query
querylD | queryText
| QL [Table2 |

(a) Query Relation

QueryPredicates
queryID [time | Nodel | Node2 | Node3
Q1 9:00 am true true true
Q1 9:30 am true true true
Q1 10:00 am | false false | unknown
Q1 10:30 am true true true
Q1 11:00 am | false true false
Q1 11:30 am true true true
(b) QueryPredicates Relation
TempRelation
temp | time | setQueries
76 9:00 am {Q1}
7 9:30 am {Q1}
76 10:30 am {Q1}
78 11:30 am {Q1}
(c) Temperature Relation
Table 3: The different relations and values

the value corresponding to ¢ is obtained by linearly
interpolating the values for ¢; and t2 and finding the
“closest” value that satisfies the predicate values at ¢
as stored in the QueryPredicates relation®. Values at
other instants when predicates are known but data
values are not known are given by the above tech-
nique. When query predicates are also not recorded,
then values are given by simple linear interpolation.

For example, consider the data as explained in the
previous section. The value at 10:00 am is obtained
as 75, and the value at 11:00 am is obtained as 77. If
a user asks for temperature values between 9:00 am
and 11:30 am to be displayed, he gets the view in

2Tn our actual implementation, the value is not guaranteed
to be the theoretically closest value. We try a few values that
are close to this value, and when we obtain a value that satisfies
the predicates, we stop, and consider this as the value at t.

33

78+

7T+

76+

75+

900 930 1000 10:30 11:00 11:30
Figure 2: Displaying the temperature values. The
interpolated values are displayed with a white circle,

and the stored values are displayed with a dark circle

Figure 2. If a user asks queries such as when was the
temperature < 75, he gets the answer as 10:00 am.
Similarly if the user asks when was there more than
2 F change in temperature in 30 minutes, he gets the
answer that the temperatures at 9:30 and 10:00 differ
by 2F. Similarly the temperature at 9:45 is 76 F.

Let us consider one more usage: where we can an-
swer queries on an environment parameter whose val-
ues are not stored. For example, consider tempera-
ture values stored from the query: read temp, time
from tempService every 30 min for 8 hrs start 9:00 am
where (humidity > 75). Suppose TempRelation and
QueryPredicates relation have values shown in Ta-
ble 3. Node2 in the query corresponds to the predi-
cate (humidity > 75). The data stored can be used to
answer queries on humidity values to a limited extent:
we know that at 10:00 am, humidity was < 75.

5 Conclusions and Future Re-
search Directions

In this paper, we studied the problem of sensor data
management. We argued that there are several ap-
plications for which we need to use a non-streaming
model, and store the sensor data. In this scenario,
we studied how an application can make effective use
of the stored sensor data. There are two difficult
problems in this scenario: we cannot store all possi-
ble values of a sensor, in stead we store it periodi-
cally, also from one configuration of a sensor at any

SIGMOD Record, VVol. 32, No. 4, December 2003

instant. Also sensors try to minimize the data sent
out, considering its bandwidth and power limitations.
So what is the data that is stored? We defined the
data stored as a subset of data that are sent out by
the sensors, and correspond to the data received by
applications. The second difficult question is the sen-
sor data stored will have lots of holes corresponding
to predicates, or network loss. How can an appli-
cation understand the semantics of sensor data? We
proposed a solution for this where the query that gen-
erated the data is stored along with the data. This
enables a later application to get the identical view as
an application that requested the data to be stored.
Also more queries on the sensor data can be answered
than would be possible by not storing the queries.
There are lot of opportunities for future work. One
important future work is given a set of queries that
later applications will ask, to determine the data and
queries that should be stored. We assumed for the
purposes of this paper that the data and queries to be
stored is already known. Another interesting future
work is index structures for sensor data, and to man-
age the data assuming a fixed storage model for data.
In other words, we have a fixed amount of storage,
when we have more sensor data than can be stored
in the given storage, we have to erase some data or
store older data at coarser granularities. Some pre-
liminary work assuming temporal aggregate queries
has been done in [21]. We would like to study this
problem with reference to our applications, where we
are not limited to purely temporal aggregate queries.

Acknowledgements: I would like to thank Yun Chi
and Prof. Richard. R. Muntz for several ideas and
discussions throughtout. Also all members of MMSL,
UCLA for the system implementation.

References

[1] A. Arasu, B. Babcock, S. Babu, M. Datar,
K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
STREAM: The Stanford Stream Data Manager
(Demo). In ACM SIGMOD, San Deigo, CA, Jun.
2003.

[2] S. Babu, L. Subramanian, and J. Widom. A Data
Stream Management System for Network Traffic
Management. In Workshop on Network Related Data
Management, Santa Barbara, CA, May. 2001.

[3] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring Streams - A New Class of
Data Management Applications. In VLDB, Hong
Kong, China, Aug. 2002.

[4] P. Castro, P. Chiu, T. Kremenek, and R. R. Muntz.
A Probabilistic Room Location Service for Wireless

SIGMOD Record, Vol. 32, No. 4, December 2003

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

Networked Environments. In Ubiquitous Computing,
Atlanta, GA, Sep. 2001.

J. Gehrke, F. Korn, and D. Srivastava. On Com-
puting correlated aggregates over Continual Data

Streams. In ACM SIGMOD, Santa Barbara, CA,
May. 2001.

National Instruments. Labview: The soft-
ware that powers virtual instrumentation.
http://www.ni.com/labview/.

Berkeley Intel Research Labora-
tory. Great duck island project.

http://www.greatduckisland.net/index.html.

S. Madden and M. J. Franklin. Fjording the Stream:
An Architecture for Queries over Streaming Sensor
Data. In IEEE Int’l Conf. on Data Engineering, San
Jose, CA, Feb. 2002.

S. Madden, M. Shah, J. M. Hellerstein, and V. Ra-
man. Continuously Adaptive Continuous Queries
over Streams. In ACM SIGMOD, Madison, Wison-
sin, Jun. 2002.

G. S. Manku and R. Motwani. Approximate Fre-
quency Counts over Streaming Data. In VLDB, Hong
Kong, China, Aug. 2002.

MMSL. Multi media systems laboratory, ucla.
http://mmsl.cs.ucla.edu.

M. Murata, D. Lee, and M. Mani. “Taxonomy
of XML Schema Languages using Formal Language
Theory”. In Extereme Markup Languages, Montreal,
Canada, Aug. 2001.

OSU. Traffic monitoring laboratory, osu.
http://www.ceegs.ohio-state.edu/ coifman/TML/.
D. S. Parker, R. R. Muntz, and H. L. Chau. The
Tangram Stream Query Processing System. In IEEFE

Int’l Conf. on Data Engineering, Los Angeles, CA,
Feb. 1989.

Berkeley Path. Path for advanced transit
and highways (path), berkeley. http://www-
path.eecs.berkeley.edu/.

UCLA. Smart kindergarten.

http://nesl.ee.ucla.edu/projects/smartkg/default.htm.

UCLA. Ucla transit services - realtime bus tracking.
http://pantheon.cs.ucla.edu/RTV/.

Princeton University. The zebranet wildlife tracker.
http://www.ee.princeton.edu/ mrm/zebranet.html.
S. D. Viglas and J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
ACM SIGMOD, Madison, Wisonsin, Jun. 2002.

Y. Yao and J. E. Gehrke. The Cougar Approach
to In-Network Query Processing in Sensor Networks.
ACM SIGMOD Record, 31(3), Sep. 2002.

D. Zhang, D. Gunopulos, V. J. Tsotras, and
B. Seeger. Aggregations over Data Streams using

Multiple Time Granularities. Information Systems
Journal, 28(1), Mar. 2003.

34

