

Research in Database Engineering at the University of Namur

Jean-Luc Hainaut
LIBD - Laboratory of Database Applications Engineering

University of Namur, Institut d'Informatique, B-5000 Namur, Belgium
jean-luc.hainaut@fundp.ac.be - http://www.info.fundp.ac.be/libd

1 Introduction

The Laboratory of Database Applications Engineering
(LIBD) is devoted to the development of models,
techniques, methods and tools to support all the
engineering activities related to databases and their
applications. It also develops material and activities to
transfer database knowledge towards industry.
This report describes the main activities of the
laboratory during the last ten years. It first discusses
general resources and processes that form the baselines
for the other research activities. The latter will be
classified into reverse engineering, interoperability,
advanced processes and CASE technology.

2 The baselines
Most projects and activities have been based on a few
general paradigms that we describe in this section.

2.1 Generic specification model
The Generic Entity-relationship model (GER) is a
wide-spectrum information/data structure specification
model. Encompassing the main concepts and constructs
of most popular modeling formalisms, be they value-
based or object-based, it has been given a precise
semantics via an extended version of the NF2 (non-first
normal form, or nested) relational model [6]. Through a
specialization mechanism, such usual models as ERA,
UML class diagram and ORM can be rigourously
specified and compared [7]. Similarly, the GER can be
used to define standard data models such as the
relational, object-relational, CODASYL, IMS, XML or
plain file structure models.

2.2 Transformational technology
Most database engineering processes can be modelled
by a chain of schema rewriting operators called
transformations. For instance, deriving a relational
schema from an ERA conceptual schema can be carried
out by replacing each entity type with a table, each
single-valued attribute with a column, each one-to-
many relationship type with a foreign key, each
multivalued attribute with a dependent table, etc.

Considering a formalism F, defined as a

specialization of the GER, a schema S expressed in F,
and an object O in S, a transformation Σ is defined by a
couple of mappings <T,t>, where T - the structural
mapping - is a rewriting rule that replaces O with T(O)
in S, and t - the instance mapping - specifies how any
instance o of O is transformed into t(o), a valid instance
of T(O). An important aspect of transformations is to
what extent they preserve the semantics of the source
schema. Semantics-preserving transformation can be
identified through a proof mechanism based of the
algebra of the GER [12].

2.3 Database Design
Though widely described since the seventies, this
process still deserves further development. Indeed,
modern database building brings new challenges for
which current methods appear too weak. In addition,
understanding database design approaches, not only as
they are described in textbooks, but also those that are
actually practised by development teams, is at the core
of database reverse engineering. We have developed a
generic database analysis and design methodology,
based on the transformational paradigm, that can be
specialized to fit the current approaches and to address
new emerging challenges.

2.4 CASE support
DB-MAIN is the experimental meta-CASE platform
that has been built to enact and evaluate all the
modeling and methodological results of the laboratory.
It comprises a basic services layer that includes all the
functions necessary to perform standard engineering
activities and an extensibility layer, through which new
models and processors can be developed (as described
below). The DB-MAIN architecture has been based on
the GER and includes a rich transformation toolset. Its
history manager allows a formal trace of the
engineering activities to be recorded for further
processing as we will see later.

The Education edition of the tool is in use in an
estimated 4,000 schools and universities. The industrial
editions (currently version 6.5d) have been available
since 1996.

3 Database Reverse Engineering

SIGMOD Record, Vol. 32, No. 4, December 2003 124

3.1 A Generic Approach
Recovering the abstract specifications of a legacy
database, be it made up of a genuine database or of a set
of standard files, have progressively proved much more
complex than first thought, and that merely drawing the
data structures declared in the DDL code generally lead
to poor, incomplete and obscure schemas. Many
unexpected problems were discovered in large systems.
They lead to two challenges, namely (1) eliciting
implicit (that is, undeclared) physical constructs and (2)
interpreting the physical constructs into conceptual
terms. From these observations, we have developed a
comprehensive generic methodology in which each
problem can be addressed and solved through specific
reasoning and techniques. It comprises three main
processes, namely project preparation, data structure
extraction and data structure conceptualization.

The goal of the first process is to build the gross
architecture of the system by identifying the major
components: programs, libraries, files, databases, JCL
scripts, high level data and control flows. The useful
sources of information also are identified:
documentation (if any), DDL code, data dictionaries,
file description, program code, screen layout, etc.

The second process, data structure extraction, is
intended to rebuild a complete physical schema of the
database which includes both the declared constructs
(structures and constraints) and the implicit constructs.
Starting from the raw physical schema, that strictly
expresses the constructs declared in the DDL code, the
process enriches and refines it from the information
extracted from various sources such as program source
code, database contents, documentation fragments,
screen layout, report definition, and the like. This
information is translated into additional record type and
field decomposition, uniqueness constraints, foreign
keys, redundancies and functional dependencies, etc.

Through the third process, data structure extraction,
a plausible conceptual schema is derived from the
complete physical schema. The problems are here of a
different nature. They consists in discovering the
intention (or semantics) expressed by the physical
constructs, taking into account the techniques and tricks
used by the developers when the database was built.

By carrying out a series of reverse engineering
projects, we made two surprising observations. The first
one is that most constructs are implicit, so that the DDL
code provides a very partial view of the physical
schema. The second observation is that the way
constructs are hidden is for the largest part model-
independent. For instance, while standard files
naturally include many implicit foreign keys, the latter
have been found in most hierarchical and network
databases as well and even in recent relational
databases, where that could have been declared. In

other words, designing dedicated reverse engineering
methodologies for IMS, CODASYL DBTG or COBOL
would be meaningless, since they would be almost the
same, but for the preliminary DDL code parsing.

The generic methodology we have developed relies
on the GER model. Indeed, database schemas as they
are built and used in reverse engineering are, be nature,
heterogeneous. On the one hand, since real databases
generally consist of a federation of physical databases, a
final physical schema often results from the integration
of several schemas in different technologies. Typically
relational or IMS schemas include dozens of COBOL
record types. On the other hand, the conceptual process
basically is continuous, so that a schema being reverse
engineered still includes unprocessed physical and
logical (model-specific) constructs, while it already
includes final conceptual constructs.

The methodology also relies on the transformational
paradigm. In particular, the conceptualization process
has been modelled as a chain of transformation that are
the inverse of logical design techniques.

The baselines of the database reverse engineering
methodology have been presented in [8, 9, 14].

3.2 Specialized methodologies
We have developed specific techniques and rules to
help solving complex problems. We describe shortly
three of them.

Program understanding techniques. Many implicit
constructs can be identified by examing how the
application programs use the data. For example, the
code for inter-record navigation, field processing and
validation before writing data in a file generally gives
much information on the structure and properties of the
data. Hence the use of program understanding
techniques, that have been adapted for data structure
elicitation. In particular, we have developed variants of
regular pattern matching, dependency graph analysis,
data flow analysis and program slicing [15].

Foreign key interpretation. Foreign keys form one
of the most important structure to recover. However,
interpreting them poses another challenge. Besides the
standard "foreign key into many-to-one relationship
type" transformation rule, we have identified and solved
about thirty non standard patterns of which we have
found no trace in the literature.

Subtype hierarchies rebuilding. Many techniques
exist to implement is-a relations in non object-oriented
technologies. One of the most popular of them is
through downward inheritance, which consists in
recursively distributing the attributes and other
constructs of supertypes among their subtypes, then
discarding these supertypes. To rebuild the subtype
hierarchy from such data structures, we have derived an
efficient and intuitive algorithm from the Galois lattice.

125 SIGMOD Record, Vol. 32, No. 4, December 2003

3.3 Web site reengineering
In many companies, the official web site is an integral
part of the information system, in that, much
information of the web pages has no counterpart in the
corporate databases. Reengineering this information by
splitting these pages into interpreted data and
presentation information has become vital. Though this
process requires specific techniques, it shares much
with pure database reverse engineering. The project
WebReverse addresses this problem by developing
specialized techniques and tools [5]. This project takes
place at the CETIC (www.cetic.be), a inter-university
research center in which the LIBD is involved.

3.4 CASE support
Reverse engineering requires the precise analysis of
huge documents such as million-LOC program code
and schemas that include thousands of tables. It also
requires repeatedly applying complex rules on
thousands of patterns. Hence the need for specialized
reverse engineering tools. We have included in the DB-
MAIN CASE environment tools that support many of
the reasoning and techniques we have discussed above.
See [11, 17] for instance.

4 Database Interoperability
Developing models, techniques and tools for building
links between existing databases is another stream of
activity of the LIBD. Here below, we describe three of
the main results.

4.1 Scalable Federated Database
Architecture

Since 1995, we have been exploring architectural issues
in federated databases within the wrapper/mediator
framework. We have proposed a new scheme of sharing
responsibilities such that wrappers assume a greater
part of the federation mapping in order to alleviate the
tasks of the mediators. A methodology that combines
reverse and forward approaches has been developed to
specify and automatically build the components of a
federation while taking into account the current
requirements of the organization [13, 21]

4.2 Wrapper design and development
This line of activity is linked with the former, since it
concentrates on the development of a specific type of
components of a federated database. However, due to
its wider scope, we discuss it independently. Generally
a database wrapper is a piece of software that translates
queries and data between an abstract external model
and the physical model of an existing database.

Considering the poor quality of legacy databases, we
have been lead to extend this definition as follows. We
have shown that the raw physical schema, merely
derived from the DDL code, most often is incomplete,
and must be enriched with hidden constructs made
explicit. The wrappers we intended to build had to
enjoy two advanced properties, (1) they provide both
extract and update facilities, (2) they control both the
explicit and explicit constructs of the source database.
For instance, these "intelligent" wrappers manage the
implicit compound and multivalued fields found in
relational databases and the foreign keys that implicitly
hold in COBOL files. The DB-MAIN environment has
been extended with a plugin that allows wrappers for
SQL databases and COBOL files to be designed and
automatically generated with two interfaces, namely
OQL and Java objects. These results strongly rely on
the database reverse engineering methodology and on
the history processing facility of DB-MAIN [20].

4.3 Data conversion and migration
This a natural extension of the results described above.
When the relation between data structures S1 and S2
can be described by the chain of structural
transformations Tn*…*T1, with N≥1, then converting
any instance s1 of S1 into a valid instance of S2
consists in computing tn*…*t1(s1). This principle has
been applied to DB-to-DB, DB-to-XML and XML-to-
XML conversion. When the schemas and the
transformations are under the responsibility of DB-
MAIN, the chain Tn*…*T1 is derived from the history
and tn*…*t1 is automatically built from the known
instance mappings of T1 to Tn. Then, DB-MAIN
automatically generates a procedural expression of the
latter in the form of an ETL component. According to
the context, this component is expressed in COBOL, in
Java, or as an XSLT sheet. A simplified migration
architecture uses wrappers so that the migrator
interfaces with the source and target databases through
a unique abstract model. For further details see [2].

5 Special Processes
This section describes the results of other R&D
activities that do not fit into the first three categories but
that can be located at their upstream or downstream.

5.1 Active Databases Engineering
The theme focuses on the systematic generation of the
set of triggers that implement abstract behaviour
specifications. The main results are (1) a methodology
for translating conceptual integrity constraints into
triggers, (2) a graphical extension of DB-MAIN to
show the network of a trigger system (as well as the

SIGMOD Record, Vol. 32, No. 4, December 2003 126

potential critical sections) and (3) a parametric Oracle
DDL generator, integrated to DB-MAIN, that can
generate efficient data structures that completely
implement complex integrity constraints through
various techniques. The latter is also the only (as far as
we know) SQL generator that completely and correctly
generates arbitrary multiple is-a hierarchies for Oracle
and InterBase, including mutation operators (see [1] for
technical details).

5.2 Temporal Database Engineering
The goal of this research was to bring research results
in temporal databases to practitioners. It has resulted
into three products: (1) a complete methodology with
which a temporal conceptual schema can be
progressively transformed into an SQL2 relational
schema, (2) a sophisticated Oracle generator that
produces an active database according to several data
distribution strategies for transaction-time, valid-time,
bitemporal and monotonic data, (3) an ODBC-like API
allowing programmers to use such a temporal database
without worrying about the technical aspects. The
latter offers a reduced version of TSQL2 through which
temporal projections, joins and agregations can be
carried out. These products, that have been developed
as extensions of DB-MAIN, are described in [3].

5.3 XML engineering
The baselines of the LIDB activities, namely the GER
model, the transformational paradigm, the formalized
DB design approach and the DB-MAIN platform are
quite fitted to reasoning about, and to process, XML
structures. Indeed, the DTD and XML schema models
can be completely specified as specialization of the
GER. Therefore, all the processes that are relevant to
database engineering also apply to XML structure
manipulations. In particular, we have developed a
complete methodology for expressing any conceptual
schema into a DTD or an XML schema (full generators
included). We have also built the required techniques
and tools to reverse engineer and to transform XML
structures. As described above, XML-to-* and *-to-
XML data migrators are available. All these tools have
been developed in the DB-MAIN environment.

5.4 Database Evolution
This research addresses one of the most complex
database engineering problems, that is, how to adapt a
complex legacy database to changing users
requirements. It explores several strategies, the most
challenging of which being the automatic propagation
of conceptual changes down to the physical schema and
to the database contents. A comprehensive
methodology has been designed and is supported by a

plugin of DB-MAIN. The approach and the tools are
described in some details in [10, 18].

5.5 Database Applications Reengineering
This activity copes with the third, and still widely
unsolved, aspect of database evolution, namely
automatically propagating requirements changes to the
application program that access a legacy database. We
have so far identified and analyzed six strategies
through their application to a small but representative
case study [16]. One of them seems particularly
attractive in platform migration problems. It allows
legacy programs to run on top of a modernized database
(for instance the normalized SQL translation of a
COBOL database) while requiring little program
rewriting. It relies on the database reverse engineering
methodology and on intelligent wrapper generation.

6 CASE technology

6.1 Meta-development environment
The DB-MAIN platform provides an efficient support
for the development of additional specialized
components, or plugins. Besides the possibility to
dynamically associate meta-properties with any object
class of the repository, the main component of the
meta-layer of DB-MAIN is the Voyager language with
which most extensions described in this report have
been developed. This complete procedural language
includes a predicative and navigational interface to the
repository, a direct access to the kernel basic functions,
a powerful list processor, a tokenizer for parser
development, I/O functions and a coordination
mechanism with external independent processes. Some
of its features have been described in [4].

6.2 Engineering process control
The genericity of the GER, of the transformational
technology and of DB-MAIN itself provides what can
be called methodology-neutral engineering resources.
This research addressed the problem of specializing
them for specific engineering tasks such as database
design, database reverse engineering, database
evolution ot XML database development. It has yielded
three products, that are described in [19] as well as in
the technical documents of the CASE tool: (1) a
comprehensive model of engineering processes and
products, (2) a method description language (MDL) and
its development environment, comprising an
specification editor, a graphical viewer and a compiler,
(3) the method engine of DB-MAIN, which enacts
rigorously the current method through a graphical view
of the method and of the history of the processes.

127 SIGMOD Record, Vol. 32, No. 4, December 2003

7 Further information
More detailed information can be found on the site of
the laboratory: http://www.info.fundp.ac.be/libd. The
site includes the text of many of the 60 articles
published in the last ten years as well as about 4,000
pages of technical and didactic material on database
engineering. The Education edition of the DB-MAIN
CASE tool can be downloaded free of charge together
with tutorials, sample projects and case studies. It
includes all the basic functions as well as some
advanced processors but is limited to small-size
projects that nevertheless are quite comfortable for
educational use.

References
[1] Brogneaux, A-F., Code generator for Oracle

databases, v6.5, LIBD Technical manual, March
2002, http://www.info.fundp.ac.be/~dbm/
publication/2002/SQL-generator.pdf

[2] Delcroix, C., Thiran, Ph., Hainaut, J-L., Approche
transformationnelle de la réingénierie des données,
Ingénierie des Systèmes d'Information, 6(1),
Hermès, Paris, 2001

[3] Detienne, V., Hainaut, J-L., CASE Tool Support
for Temporal Database Design, in Proc. of 20th
Int. Conf. on Conceptual modeling (ER 2001),
Springer Verlag LNCS 2224, 2001

[4] Englebert, V., Hainaut, J-L., DB-MAIN: A Next
Generation Meta-CASE, in Information Systems
Journal, Special issue on meta-modelling and
methodology engineering, 24(2) Pergamon, June
1999

[5] Estiévenart, F., François, A., Henrard, J., Hainaut,
J., Web Site Engineering, in Proc. of the 5th
International Workshop on Web Site Evolution,
Amsterdam, Sept. 2003, IEEE CS Press, 2003

[6] Hainaut, J.-L., A Generic Entity-Relationship
Model, in Proc. of the IFIP WG 8.1 Conf. on
Information System Concepts: an in-depth
analysis, North-Holland, 1989

[7] Hainaut, J-L., Entity-Relationship models : formal
specification and comparison, in Proc. of the 9th
Int. conf. on ER Approach : the Core of
Conceptual Modelling, North-Holland, 1991

[8] Hainaut, J-L, Database Reverse Engineering,
Models, Techniques and Strategies, in Proc. of the
10th Conf. on ER Approach, San Mateo (CA), E/R
Institute Publish., 1991

[9] Hainaut, J-L., Chandelon M., Tonneau C., Joris
M., Contribution to a Theory of Database Reverse

Engineering, in Proc. of the IEEE WCRE,
Baltimore, May 1993, IEEE CS Press, 1993

[10] Hainaut, J-L., Englebert, V., Henrard, J., Hick, J-
M., Roland, D., Database Evolution - the DB-
MAIN Approach, in Proc. of the 13th Int. Conf.
on ER Approach, Manchester, Dec. 1994,
Springer-Verlag, LNCS 881, 1994

[11] Hainaut, J-L., Englebert, V., Henrard, J., Hick, J-
M., Roland, D., Database Reverse Engineering :
from Requirements to CARE tools, Journal of
Automated Software Engineering, 3(1), 1996,
Kluwer Academic Press

[12] Hainaut, J-L., Specification preservation in
schema transformations - Application to semantics
and statistics, Data & Knowledge Engineering,
16(1), 1996, Elsevier Science Publish

[13] Hainaut, J-L., Thiran, Ph., Hick, J-M., Bodard, S.,
Deflorenne, A., Methodology and CASE tools for
the development of federated databases, The
International Journal of Cooperative Information
Systems, 8(2-3), pp. 169-194, World Scientific,
June & Sept. 1999

[14] Hainaut, J-L., Introduction to Database Reverse
Engineering, LIBD lecture notes,
{http://www.info.fundp.ac.be/~dbm/publication/2
002/DBRE-2002.pdf}

[15] Henrard, J., Roland, D., Englebert, V., Hick, J-M.,
Hainaut, J-L., Program Understanding in
Databases Reverse Engineering, in Proc. of the
9th Int. Conf. on DEXA, Vienna, June 1998,
Springer-Verlag, 1998

[16] Henrard, J., Hick, J-M. Thiran, Ph., Hainaut, J-L.,
Strategies for Data Reengineering, in Proc. of
WCRE'02, IEEE CS Press, 2002

[17] Henrard, J., Program comprehension in database
reverse engineering, PHD Thesis, Sept. 2003

[18] Hick, J-M., Hainaut, J-L., Strategy for database
application evolution: the DB-MAIN approach, in
Proc. ER'2003 conference, Chicago, Oct. 2003,
LNCS Springer-Verlag, 2003

[19] Roland, D., Database engineering process
modelling, PHD Thesis, June 2003

[20] Thiran, Ph., Hainaut, J-L., Wrapper Development
for Legacy Data Reuse, in Proc. of WCRE'01,
IEEE CS Press, 2001

[21] Thiran, P., Interoperability of legacy databases. A
combined top-down and bottom-up approach,
PHD Thesis, Oct. 2003

SIGMOD Record, Vol. 32, No. 4, December 2003 128

