

P-Grid: A Self-organizing Structured P2P System

Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, Roman Schmidt

Distributed Information Systems Laboratory
École Polytechnique Fédérale de Lausanne (EPFL)

Contact: karl.aberer@epfl.ch

1 Self-organizing Structured P2P Sys-
tems1

In the P2P community a fundamental distinction
is made among unstructured and structured P2P
systems for resource location. In unstructured
P2P systems in principle peers are unaware of
the resources that neighboring peers in the over-
lay networks maintain. Typically they resolve
search requests by flooding techniques. Gnutella
[9] is the most prominent example of this class.
In contrast, in structured P2P systems peers
maintain information about what resources
neighboring peers offer. Thus queries can be
directed and in consequence substantially fewer
messages are needed. This comes at the cost of
increased maintenance efforts during changes in
the overlay network as a result of peers joining
or leaving. The most prominent class of ap-
proaches to structured P2P systems are distrib-
uted hash tables (DHT), for example Chord [17].

Unstructured P2P systems have generated
substantial interest because of emergent global-
scale phenomena. For example, the Gnutella
overlay network exhibits the following character-
istics [15]:
1. The network has a small diameter, which

ensures that a message flooding approach
for search works with a relatively low time-
to-life (approximately 7).

2. The node degrees of the overlay network
follow a power-law distribution. Thus few
peers have a large number of incoming links
whereas most peers have a very low number
of such links.

These properties result from the way Gnutella
performs network maintenance: each peer main-
tains a fixed number of active links. Using the
network maintenance protocol a peer discovers
new peers in the network by flooding discovery

1 The work presented in this paper was supported in part by
the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322 and by SNSF grant 2100-
064994, “Peer-to-Peer Information Systems.”

messages. From the responses it (randomly) se-
lects certain peers to which direct network links
are established.

The resulting power-law distribution of
node degrees has been discovered for many other
types of networks as well, for example, the
World Wide Web, citation networks, and genetic
networks. The property is accounted to the
mechanism of how these networks are being
constructed: New nodes preferentially attach to
already well-connected ones exactly what is ob-
served for Gnutella. Thus Gnutella is a com-
pletely decentralized but also self-organizing
system: From randomized interactions of peers
global structures emerge.

Despite the similarity of the network main-
tenance and search protocols in Gnutella, they
serve fundamentally different purposes and are
independent. The network maintenance protocol
implements a self-organization process changing
the system state, i.e., the overlay network’s struc-
ture, whereas the search protocol implements a
distributed algorithm in the overlay network. The
properties of the emergent Gnutella overlay net-
work are relevant for the search performance.
The independence of the network maintenance
and search protocols makes it possible to use
alternative search protocols which may exploit
the emergent overlay network structure more
efficiently. Examples are the random walker
model [14] and the percolation search model
[16], which both exploit the specific overlay
network structure.

In contrast, standard structured P2P systems
follow a different approach with respect to net-
work maintenance. They assign static identifiers
to peers and the distributed data structures (e.g.,
DHTs) are constructed based on these identifiers
by distributed algorithms. As a result the overlay
network structure is mainly determined by the
choice of identifiers and in turn any self-
organization of the system is prevented.

However, there exists an example of a
structured P2P system, Freenet [8] that exploits a
self-organization process for optimizing resource
allocation. Freenet maintains routing tables just
the way as a structured P2P system does, but the
overlay network is modified as a result of query

execution, such that resources with similar keys
tend to cluster and in turn queries can be an-
swered more efficiently. Thus Freenet attempts
to implement a self-organization process, simi-
larly as Gnutella, with the purpose of optimizing
the system’s performance. The Freenet data
structures are constructed in a heuristic manner,
so no probabilistic execution guarantees on
search efficiency can be given. Experimental
results are inconclusive whether the same degree
of efficiency as in DHT-based systems is
achieved in general [5].

This motivated us to ask the following
question: Is it possible to use a self-organization
process (such as in Gnutella or Freenet) to con-
struct an overlay network that is a DHT-like
routing infrastructure such that both probabilistic
guarantees on search efficiency can be given and
resource allocation is optimized? In particular,
with respect to resource allocation we are inter-
ested in the problem of load balancing in the
presence of non-uniform data key distributions.

Load balancing as a resource allocation
problem is critical to support high scalability,
availability, accessibility, and throughput. Poor
load balancing may in fact gradually transform a
P2P system into a backbone-based system as it
was observed for Gnutella [7]. For systems sup-
porting equality-based lookup of data only, the
problem of non-uniform workloads may be cir-
cumvented by applying hash functions to the
data keys, thus uniformly distributing workload,
both for storage and query answering. In combi-
nation with using balanced search structures, i.e.,
balanced distributed search trees, this approach
leads to uniform load distribution among the
participating peers. However, it is limited if fur-
ther semantics of the data keys is exploited, for

example, in the simplest case when the ordering
of data keys is used to support prefix or range
queries. This is critical for DB-oriented applica-
tions.

2 P-Grid in a Nutshell
As a result of our research we can provide a

solution to the problem we have posed above. P-
Grid [3] is a peer-to-peer lookup system based
on a virtual distributed search tree, similarly
structured as standard distributed hash tables:
Figure 1 shows a simple P-Grid.

Each peer holds part of the overall tree.
Every participating peer's position is determined
by its path, that is, the binary bit string represent-
ing the subset of the tree's overall information
that the peer is responsible for. For example, the
path of Peer 4 in Figure 1 is 10, so it stores all
data items whose keys begin with 10. For fault-
tolerance multiple peers can be responsible for
the same path, for example, Peer 1 and Peer 6. P-
Grid's query routing approach is as follows: For
each bit in its path, a peer stores a reference to at
least one other peer that is responsible for the
other side of the binary tree at that level. Thus, if
a peer receives a binary query string it cannot
satisfy, it must forward the query to a peer that is
“closer” to the result. In Figure 1, Peer 1 for-
wards queries starting with 1 to Peer 3, which is
in Peer 1's routing table and whose path starts
with 1. Peer 3 can either satisfy the query or for-
ward it to another peer, depending on the next
bits of the query. If Peer 1 gets a query starting
with 0, and the next bit of the query is also 0, it
is responsible for the query. If the next bit is 1,
however, Peer 1 will check its routing table and
forward the query to Peer 2, whose path starts
with 01.

Figure 1: Example P-Grid

1 6

stores
data with
prefix 00

2

stores
data with
prefix 01

3 4

stores
data with
prefix 10

stores
data with
prefix 10

5

stores
data with
prefix 11

1 : 3
01: 2

stores
data with
prefix 00

1 : 5
01: 2

1 : 4
00: 6

0 : 2
11: 5

0 : 6
11: 5

0 : 6
10: 4

0 1

00 01 10 11

query(6,100) query(5,100)

query(4,100), found!

“virtual binary search tree“

X

P:X

P

Peer X

Routing table
(route keys with Prefix P to peer X)

Data store
(keys have prefix P)

The salient feature of P-Grid, in contrast to
other DHT-based P2P systems, is the separation of
concern between peer identifier and peer’s path. In
P-Grid peer paths are not determined a priori but
are acquired and changed dynamically through
negotiation with other peers as part of the network
maintenance protocol. Thus P-Grid’s prefix-routing
infrastructure is constructed by means of a
decentralized, self-organizing process in which it
adapts to a given distribution of data keys stored by
the peers.

The process is based on pair-wise interactions
of peers in which they locally decide whether to
modify the routing infrastructure (by path exten-
sion or retraction) in a given data key subspace, if
the present data justifies such a modification. As a
result the shape of the (virtual) trie underlying the
construction of routing tables will adapt to the data
key distribution. Thus we achieve a uniform load
distribution for peers with respect to storage (and
querying assuming uniform query distribution).

This leads to an interesting problem with re-
spect to search. In the worst case, for degenerated
data key distributions, the tree shape no longer pro-
vides an upper bound for search cost as it might be
up to linear depth in network size. However, it can
be shown by theoretical analysis that for a (suffi-
ciently) randomized selection of links to other
peers in the routing tables, probabilistically the
search cost in terms of messages remains logarith-
mic, independently of the length of the paths occur-
ring in the virtual tree [2].

Another aspect of load balancing is uniform
replication of data to support uniform availability.
In current structured P2P systems this problem is
typically tackled by controlled replication, where a
globally constant replication factor is assumed.
Besides introducing global knowledge into the sys-
tems, which is undesirable from the viewpoint of
decentralization and peer autonomy, this approach
also lacks the ability to adaptively exploit existing
storage resources in an optimal manner.

In contrast, we use an adaptive, self-
organizing mechanism to globally balance data
replication. Different to storage load, peers cannot
locally detect non-uniform replication of data in the
entire network. We employ a sampling-based
method to detect imbalance and to dynamically
adapt replication. Thus data will be dynamically
replicated while peers aim at using their storage
capacity optimally. An important aspect is the mu-
tual dependency among storage load balancing and
uniform replication. When peers attempt to locally
balance their storage load they may compromise
globally uniform replication. By simulation we
show for our approach that the system converges to

a state where both load balancing goals are
achieved in combination. This reactive load-
balancing of replication factor in a self-organized
manner is possible in P-Grid without affecting the
structural properties of the system because of the
independence of peer identifier and data (keys)
associated with the peer.

With P-Grid we have shown that self-
organization principles can also apply to struc-
tured P2P systems. However, different to the
situation in unstructured systems, where search
algorithms are designed in order to take advantage
of the emergent overlay network structures, we
design the self-organization process to converge
to an overlay network such that provable efficient
search algorithms can be applied and at the same
time load balancing goals are achieved.

3 Updates in P-Grid
Until recently P2P systems were primarily used
for sharing static, read-only files. Thus most P2P
systems did not provide update mechanisms that
would work in the presence of replication. For
example, centralized (or hierarchical) P2P sys-
tems, such as Napster or FastTrack, maintain a
centralized index of data items available at online
peers. If an update of a data item occurs this
means that the peer that holds the item changes it.
Subsequent requests would get the new version.
However, updates are not propagated to other
peers which replicate the item. As a result
multiple versions under the same identifier may
co-exist. The same holds true for most
decentralized systems such as Gnutella.

Some systems partially address updates. For
example, in Freenet an update is routed “down-
stream” based on a key-closeness relation. Since
the network may change during this and no pre-
cautions are taken to notify peers that come online
after an update has occurred, consistency guaran-
tees are limited.

To address updates in a decentralized way
we have designed an update algorithm [10] based
on rumor spreading that provides probabilistic
guarantees for consistency and is compatible with
the self-organizing nature of P-Grid. It was in-
spired by the fundamental work on randomized
rumor spreading presented in [13]. The update
algorithm is efficient (analytically proven) and
based on a generic push/pull gossiping scheme for
highly unreliable, replicated environments, deal-
ing with the realistic situation that peers are
mostly offline. [10] provides an analytical model
to demonstrate the significant reduction of mes-
sage overhead using optimizations techniques
(partial lists) and proper tuning of the gossiping

(push) phase which in consequence improves the
scalability of the algorithm. The efficiency of the
pull phase depends solely on the efficiency of
searches in the P2P system. The analytical model
for the gossiping algorithm is a significant contri-
bution in contrast to most of the literature in this
area which relies solely on simulation results. Since
our algorithm is generic the analytical model is
valid for many of the other variants of flooding
algorithms and so are the results of our analysis.
The algorithm is totally decentralized and uses no
global knowledge but exploits local knowledge
instead which makes it suitable for the P2P, mobil-
ity, and ad-hoc networking domains.

Some of the services discussed in the follow-
ing such as dynamic address management (Section
4.1) and trust (Section 4.2) depend heavily on the
provision of update functionality.

4 Self-Organizing Services
This section presents identity and trust manage-
ment as two sample, self-organizing services im-
plemented on top of P-Grid.

4.1 Handling Dynamic Addresses and
Identity of Peers

As IP addresses have become a scarce resource
most computers on the Internet no longer have
permanent addresses. For client computers this is
usually not a big problem but with the advent of
P2P systems, where every computer acts both as a
client and as a server, this has become increasingly
problematic. In advanced P2P systems ad-hoc con-
nections to peers have to be established, which can
only be done if the receiving peer has a permanent
IP address. To handle this we have designed a
completely decentralized, self-maintaining, light-
weight, and sufficiently secure peer identification
service based on P-Grid. It allows us to consistently
map unique peer identifiers, in particular the logi-
cal identity of peers used for routing in P-Grid,
onto dynamic IP addresses. It is designed to operate
in environments with low availability of the peers
[12].

The basic idea is to store the mappings in P-
Grid itself: Peers store their current id/IP mapping
in P-Grid and update it if the IP address changes
(for example, if they come online again). For rout-
ing search requests while searching id/IP mappings
using P-Grid’s routing infrastructure peers use
cached id/IP mappings. If cached entries are stale
they are updated by recursively querying the P-
Grid again. Although at first sight this may look as
an unsolvable, recursive “hen-egg problem,” we
demonstrate that not only most of the original que-

ries will be answered successfully, but also, that
the recursions triggered by failures will lead to a
partial “self-healing” (a different form of self-
organization) of the whole system by updating the
caches.

For security we apply a combination of PGP-
like public key distribution and a quorum-based
query scheme. The public keys themselves are
stored in P-Grid, and replication can provide
guarantees that are probabilistically analogous to
PGP's web of trust. The approach can easily be
adapted to other application domains, i.e., be used
for other name services, because we do not im-
pose any constraints on the type of mappings.
Motivated by the problem of handling peer iden-
tity in a setting where peers’ physical addresses
change because of network dynamics we thus
achieved a self-contained and self-maintaining
directory service for P-Grid.

4.2 Trust as the Basis for E-commerce
The vast majority of interactions among peers in a
P2P system are between complete strangers who
do not have any prior knowledge about each other.
Since peers are fully autonomous this leaves much
room for exercising opportunistic behavior of
various forms, ranging from “free riding” in file
sharing P2P networks to fraud and deception in e-
commerce related interactions. Researchers have
recognized the importance of this problem [7] and
trust and reputation management, as a social con-
trol mechanism, has been accepted as an appropri-
ate solution.

In [1] we present our decentralized trust
management model that analyzes past interactions
among peers to make a probabilistic assessment of
whether any given peer cheated in its past interac-
tions. The emphasis is put not only on assessing
trust but also on providing a scalable data man-
agement solution particularly suitable for
decentralized networks. To this end, we apply P-
Grid in such a way that for any particular peer we
designate a set of replicas to store the ratings of
trust-related behavior of that peer (complaints
filed by it about others and complaints filed by
others about it) so that the reputation data can be
accessed and collected in logarithmic time. As
replicas may provide false data, an appropriate
replication factor along with a proper voting
scheme to identify the most likely correct reputa-
tion data set are applied to achieve accurate
predictions. Trust assessments themselves are
made based on an analysis of peer interactions
modeled as stochastic processes. As it was shown
by simulations, cheating behavior of the peers can
be identified with a very high probability. The
model is simplistic in the sense that, for any peer,

the sense that, for any peer, it decides whether it
cheated in the past or not. Extensions that would
give probabilistic estimates of the peers’ future
behavior are currently underway.

Since we use P-Grid’s directory service to re-
port and store the reputation related information,
we implicitly employ the peer identification service
presented above, thus preventing distributed denial
of service attacks originating from impersonation
or trust data manipulation. Such resilience for
higher level services derived from lower levels of
the P-Grid system highlight P-Grid’s self-
organizing features that span beyond a communica-
tion network buildup.

Building on the basic trust model we have
also made some further steps towards fully-blown
P2P markets. [11] presents our solution to the prob-
lem of self-enforcing exchanges of digital goods,
while in other work we propose a fully decentral-
ized double auctioning mechanism based on the
continuous double auction scheme.

5 Conclusions
P2P systems are commonly classified into two
categories: unstructured systems (e.g., Gnutella)
exposing emergent phenomena driven from purely
local interactions, and structured (DHT-based) sys-
tems with probabilistic execution guarantees. P-
Grid combines the best of both worlds, using self-
organization principles for constructing and main-
taining a DHT-like routing infrastructure. It takes
advantage of the resulting emergent properties for
improving various services including routing, up-
dates and identity management. One may also
benefit from self-organizing principles when deal-
ing with higher-level abstractions such as trust or
global semantic interoperability [4], [6].

What started as a purely decentralized index
structure is gradually evolving into a general-
purpose distributed infrastructure. We have imple-
mented P-Grid in Java and are currently in the final
test phase. More information about P-Grid may be
found on the project’s web page at http://www.p-
grid.org.

References
[1] Karl Aberer and Zoran Despotovic. Managing Trust in a

Peer-2-Peer Information System. 10th International Con-
ference on Information and Knowledge Management
(ACM CIKM), 2001.

[2] Karl Aberer. Scalable Data Access in P2P Systems Using
Unbalanced Search Trees. Proceedings of Workshop on
Distributed Data and Structures (WDAS-2002), 2002.

[3] Karl Aberer, Manfred Hauswirth, Magdalena Punceva,
and Roman Schmidt. Improving Data Access in P2P Sys-
tems. IEEE Internet Computing, 6(1), Jan./Feb. 2002.

[4] Karl Aberer, Philippe Cudré-Mauroux, and Manfred
Hauswirth: A Framework for Semantic Gossiping. SIG-
MOD Record, 31(4), Dec. 2002.

[5] Karl Aberer, Manfred Hauswirth, Magdalena Punceva.
Self-organized construction of distributed access struc-
tures: A comparative evaluation of P-Grid and FreeNet.
5th Workshop on Distributed Data and Structures
(WDAS'2003), 2003.

[6] Karl Aberer, Philippe Cudré-Mauroux, and Manfred
Hauswirth: The Chatty Web: Emergent Semantics
Through Gossiping. Twelfth International World Wide
Web Conference (WWW2003), 2003.

[7] Eytan Adar, Bernardo A. Huberman. Free Riding on
Gnutella. First Monday 5(10) 2000.
http://firstmonday.org/issues/issue5_10/adar/index.html

[8] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar
Sandberg, and Brandon Wiley. Protecting Free Expres-
sion Online with Freenet. IEEE Internet Computing,
6(1), Jan./Feb. 2002.

[9] Clip2. The Gnutella Protocol Specification v0.4 (Docu-
ment Revision 1.2), Jun. 2001.
http://www9.limewire.com/developer/gnutella_protocol
_0.4.pdf.

[10] Anwitaman Datta, Manfred Hauswirth, and Karl Aberer.
Updates in Highly Unreliable, Replicated Peer-to-Peer
Systems. 23rd International Conference on Distributed
Computing Systems, 2003.

[11] Zoran Despotovic and Karl Aberer. Trust-Aware Deliv-
ery of Composite Goods. International Workshop on
Agents and Peer-To-Peer Computing, 2002.

[12] Manfred Hauswirth, Anwitaman Datta, and Karl Aberer.
Handling Identity in Peer-to-Peer Systems. 6th Interna-
tional Workshop on Mobility in Databases and Distrib-
uted Systems, in conjunction with DEXA'2003, Septem-
ber 1-5, 2003 (to be published).

[13] Richard M. Karp, Christian Schindelhauer, Scott Shen-
ker, and Berthold Vöcking. Randomized rumor spread-
ing. IEEE Symposium on Foundations of Computer Sci-
ence, 2000.

[14] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shen-
ker. Search and replication in unstructured peer-to-peer
networks. International Conference on Supercomputing,
2002.

[15] M. Ripeanu and I. Foster. Mapping the Gnutella Net-
work: Macroscopic Properties of Large-Scale Peer-to-
Peer Systems. IPTPS 2002.

[16] N. Sarshar, V. Roychowdury, P. Oscar Boykin. Percola-
tion-based Search on unstructured Peer-To-Peer Net-
works, IPTPS 2003.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, Frank Dabek, Hari Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Ap-
plications. ACM SIGCOMM, 2001.

