
Exposing Undergraduate Students to Database System Internals

Anastassia Ailamaki
School of Computer Science
Carnegie Mellon University

natassa@cs.cmu.edu

Joseph M. Hellerstein
Computer Science Division

University of California, Berkeley
jmh@cs.berkeley.edu

Abstract

In Spring 2003, Joe Hellerstein at Berkeley and Natassa
Ailamaki at CMU collaborated in designing and running
parallel editions of an undergraduate database course that
exposed students to developing code in the core of a full-
function database system. As part of this exercise, our
course teams developed new programming projects based
on the PostgreSQL open-source DBMS. This report de-
scribes our experience with this effort.

1 Motivation

As background, we revisit the previous teaching experi-
ences at Berkeley and CMU that led to our course design
this year.

1.1 Undergraduate DBs at Berkeley and CMU

Berkeley has traditionally offered a strongly systems-
oriented undergraduate database course, using the Ra-
makrishnan/Gehrke textbook. Throughout the semester,
the course typically covers DBMS internals, traditional
“user-level” issues like SQL and database design, and an
overview on topics such as web-search (IR) techniques,
XML, and object-relational features. Until last year, the
course used the Minibase software from Wisconsin to ex-
pose two- or three-student groups to the software engi-
neering challenges inherent in translating textbook algo-
rithms into working code.

Carnegie Mellon started offering an undergraduate
database course in Spring 1999. The material covered in
the lectures was similar to that covered by the Berkeley
course, although the Silberschatz/Korth/Sudarshan text-
book was used. The course projects, however, focused
mainly on data structures and SQL applications. Inter-
ested undergraduates were encouraged to enroll to the
entry-level graduate database course (introduced in Fall
2001), that covers in-depth systems issues and selectively
uses Minibase assignments as part of the course workload.

1.2 Prior Student Input

While at both schools the students’ reaction to the courses
was largely positive over the years, their feedback on
Minibase was fairly negative. Although Minibase offers
a significant code base and provides a challenging coding
experience, the students complained that it was difficult
to understand and extend, and yet at the same time also
too “mini” – not representative of real-world software. At
Berkeley, departmental student representatives singled out
the database course for “constructive criticism” in their
annual report at the faculty retreattwo years running, ad-
vocating for removing Minibase from the curriculum. At
the same time, CMU students were happy with the under-
graduate course, but several wished for a more systems-
oriented project that would offer them hands-on experi-
ence on the database internals.

2 The Berkeley/CMU Experiment
Anyone who has designed a student coding project knows
that it entails unusual effort: designing the requirements
and implementing the project, monitoring the student
progress and repairing bugs on the fly, and designing and
implementing test cases for grading the students’ efforts.
In Spring 2003, the Berkeley and CMU undergraduate
database course staff collaborated in designing a curricu-
lum that offers hands-on experience on the code of a real
database system.

2.1 Designing the Course Schedule

To achieve synchronization, we agreed upon the same
textbook (Ramakrishnan/Gehrke) and a similar schedule
for the entire semester. The course structure was based
upon a somewhat unusual organization that has been suc-
cessfully used at Berkeley in the past:

A front-loaded semester. The “heavier”, time-
consuming projects are assigned in the first half of the
course. Students are warned on day one that the busy
implementation work in the beginning of the semester
will be rewarded with “think time” later on. This structure

1



has proven to be very popular, since it balances both
the students’ and the TAs’ load across the semester
– most are busy with exams and projects from other
courses toward the end of the semester, when the database
course workload is light. In addition, the TAs’ advisors
appreciate their students’ lack of conflicts at the end of
the semester. The staff challenges with front-loading
are to prepare the assignments on time (difficult coding
assignments take longer to design) and to cover enough
material by the time the assignments are passed out.

A bottom-up approach. In the first few lectures, the
course touches only lightly on high-level issues like data
models and query languages by briefly introducing the re-
lational model and very simple SQL, contrasting it with
the web documents and keyword search that students are
familiar with. For the next several weeks, we dive into
system implementation issues like access methods, buffer
management, and join algorithms. After that, we begin to
weave in deeper discussions of the relational model and
languages, database design, normalization, and so on. As
is not uncommon, we save transactional issues for later in
the semester, when students have a good understanding of
the entire “single-user” database problem space.

Apart from being necessary to front-load the semester,
the bottom-up approach helps to stress the general appli-
cability of storage, buffering, indexing, and query pro-
cessing ideas for various information systems tasks, in-
cluding specifically both SQL databases and web search
engines. While few students will grow up and hack on the
internals of a DBMS, more find themselves utilizing re-
lated ideas: buffers or caches, disk-based data structures,
pipelined dataflow operators, dynamic programming, etc.
Our colleagues were initially concerned that the bottom-
up approach gives students very little data modeling con-
text for the work they do early on, counting on their in-
tuition and their willingness to “believe” that the context
will come clear in later lectures. The students, however,
have not complained about context weakness, as we take
care throughout the semester to bindthe covered material
together and emphasize the big picture.

2.2 Choosing PostgreSQL

We decided to use a full-fledged open-source DBMS for a
number of reasons. First, the students at both schools were
asking for a more “real” DBMS to work with, and this did
not seem to pose a much bigger coding challenge than
minibase. Second, the students would see a system sup-
porting the full features of a standard relational DBMS,
with a healthy exposure to the attendant complexities.
Third, the students could play with the systemin action,
doing “real things”; Minibase only supported homework

test drivers, and could not be used as a functional query
system. Fourth, the students would wrestle with a system
that they could feel to be “real”: one that is in daily use in
practical applications, discussed in active implementation
forums, worth citing on their resumes, and architecturally
and functionally similar to commercial systems.

We considered both of the leading open source systems:
MySQL and PostgreSQL. MySQL has the advantage of
significant opportunities for student extension, since it ac-
tually comes with almost none of the features taught in
a typical DB systems course – it has no cost-based opti-
mizer, no B+-trees, no fine-grained concurrency control,
no recovery, no hash joins, etc.1 By contrast, PostgreSQL
already has most of the features usually taught in class.
Of course, this it raises (surmountable) difficulties in in-
venting assignments where students can profitably extend
the system with new features.

We finally chose PostgreSQL for a number of reasons.
First, Berkeley still has extensive local expertise in the
system, and CMU recently started to use it for research
purposes. Second, because PostgreSQL is full-featured,
students could consult the code to get a better sense of
how pieces of a real system fit together (occasionally in
lecture we showed PostgreSQL source code to highlight
a point). Third, it felt inconsistent to teach about the im-
portance of a full-featured database system and train the
students using a limited environment such as MySQL.

2.3 Designing PostgreSQL Project Assignments

The joint Berkeley/CMU team designed two program-
ming projects on “system internals”, and one on “ap-
plication design”. These were supplemented with writ-
ten homeworks covering SQL, normalization theory, and
query optimization. Each programming project was done
in a team of three students. The projects were as follows:

Buffer manager replacement policies. As a warmup
assignment, students were given two weeks to (a) change
PostgreSQL’s buffer manager, replacing the default LRU
page replacement policy with both CLOCK and MRU, (b)
gather performance results of various queries that we pro-
vided over each of the three policies, and (c) explain their
performance observations based on the conceptual discus-
sion in class. The actual coding required for the assign-
ment was minimal: a dozen or so lines of new code span-
ning one “.c” file and one header file, both of which we
identified for them. However, the exercise exposed them
to the task of debugging and validating modifications to a

1It should be noted that MySQL can be interfaced to better storage
managers like BerkeleyDB and InnoDB for improved indexing, concur-
rency and recovery support. We felt that using more than one system
was a poor option for educational purposes.

2



real system: understanding a client-server process archi-
tecture and the way that a debugger is used in that context,
gathering performance traces, and mapping from experi-
mental results to concepts from class.

Operators for query processing. In their most chal-
lenging project, the students had to add a new “iterator”
to the query executor: a hash-based grouping operator,
capable both of spilling to disk when necessary, and of
maintaining memory-only performance for large inputs
with few distinct groups. The algorithm was based on
the Hybrid Cache scheme [1], modified to do grouping
rather than function caching. The TAs made the neces-
sary changes to teach the Postgres’ optimizer to choose
the new iterator. The students were given a naive main-
memory-only hash group-by iterator as a starting point –
already part of the latest PostgreSQL CVS repository –
and were given three weeks to add the support for spilling
to disk just when necessary.

The project involved understanding and implementing
a fairly complicated query processing algorithm. Perhaps
more challenging and useful was the required experience
interfacing with pre-existing subsystems that aren’t typ-
ically taught in the textbooks. In order to manage their
hashtables, students had to understand a region-based
memory allocator package – a ubiquitous subsystem in
any real DBMS that is rarely discussed in classes. In order
to manage the disk, they had to understand the temporary-
relation I/O interfaces in PostgreSQL. In order to support
aggregation in a generic way, they had to understand its
structure as a triple of functions to initialize storage, ac-
cumulate tuples into an opaque temporary object, and fi-
nalize the result tuple. Finally, the data they were hash-
ing, manipulating and storing was in PostgreSQL’s native
in-memory tuple format, and they had to understand the
routines to work with that format. After getting the code
working, they were again given a workload to run so they
could measure the tradeoffs between hash-based and sort-
based grouping, and explain these tradeoffs based on the
conceptual discussion in class.

A web-based application. At Berkeley, students im-
plemented a package-tracking application (a la UPS or
FedEx) running off a live database server, whereas CMU
students were asked to implement an application for Uni-
versity movies, in which users would register and post
movie ratings and comments. For both applications,
the students were given stock Apache and PostgreSQL
servers, the database schema, and the HTML pages for
the presentation of query forms and result pages. Their
task was to write PHP scripts embedded into the HTML
to connect to the database, translate the HTML forms

into SQL queries, and iterate through result rows, printing
them on screen. This 2-week assignment gave students
the flavor of the kind of web-based application develop-
ment that is a very common use case for database today.

2.4 Evaluation

At both schools, student feedback was quite positive. Dur-
ing the semester, it was easy to see both qualitatively and
quantitatively how the PostgreSQL assignments were bet-
ter received than Minibase had been in prior years. While
there was still discussion of subtle coding points on the
class newsgroup, these tended to focus on substantive
system issues (e.g., the use of a region-based memory
manager) rather than implementation details (e.g., the id-
iosyncratic exception handling mechanism in minibase).
Joe Hellerstein received his highest average student rat-
ing for “Teaching Effectiveness” in five times teaching the
course, and student representatives again singled out the
course at the annual faculty retreat – this time to cheer the
replacement of minibase with PostgreSQL. Natassa Aila-
maki’s ratings were also very high (no base for compari-
son, since this was her first undergraduate course). Nat-
urally, it is difficult to separate these results from other
factors – in particular, the TAs for the course this out-
ing were especially dedicated. However, our feeling is
that the use of the same “real” system for both “internals”
assignments and for application assignments as well as
the front-loaded course structure left the students with a
unique sense of accomplishment.

2.5 Course Materials

Course materials – in particular the PostgreSQL
project handouts – are available for viewing at
http://db.cs.berkeley.edu/dbcourse and at
http://www-2.cs.cmu.edu/˜natassa/15-415 .
Further materials, including homework solutions and
grading scripts, are available to instructors upon request.

Acknowledgments

The PostgreSQL internals projects were designed collab-
oratively by teams at Berkeley and CMU. The Berkeley
team consisted of Mike Franklin, Joe Hellerstein, Ryan
Huebsch, Sailesh Krishnamurthy, Boon Thau Loo and Li
Zhuang. The CMU team consisted of Natassa Ailamaki,
Spiros Papadimitriou, Minglong Shao, and Joe Trdinich.
The CMU team cordially thanks Christos Faloutsos for his
input and encouragement.

References
[1] J. M. Hellerstein and J. F. Naughton. Query Execution Techniques

for Caching Expensive Methods. InProc. ACM-SIGMOD Interna-
tional Conference on Management of Data, pages 423–424, Mon-
treal, June 1996.

3


