Exposing Undergraduate Students to Database System Internals

Anastassia Ailamaki Joseph M. Hellerstein
School of Computer Science Computer Science Division
Carnegie Mellon University University of California, Berkeley
natassa@cs.cmu.edu jmh@cs.berkeley.edu
Abstract 1.2 Prior Student Input

In Spring 2003, Joe Hellerstein at Berkeley and Natas&hile at both schools the students’ reaction to the courses
Ailamaki at CMU collaborated in designing and runniny@S 1argely positive over the years, their feedback on
parallel editions of an undergraduate database course Miibase was fairly negative. Although Minibase offers
exposed students to developing code in the core of a fi@Significant code base and provides a challenging coding
function database system. As part of this exercise &ixperience, the students complained that it was difficult
course teams developed new programming projects balkHnderstand and extend, and yet at the same time also

on the PostgreSQL open-source DBMS. This report d@° “mini” — not representative of real-world software. At
scribes our experience with this effort. Berkeley, departmental student representatives singled out

the database course for “constructive criticism” in their
annual report at the faculty retre@to years runningad-
vocating for removing Minibase from the curriculum. At
As background, we revisit the previous teaching expeffie same time, CMU students were happy with the under-
ences at Berkeley and CMU that led to our course desigfirduate course, but several wished for a more systems-

1 Motivation

this year. oriented project that would offer them hands-on experi-
ence on the database internals.
1.1 Undergraduate DBs at Berkeley and CMU 2 The Berkeley/CMU Experiment

Berkeley has traditionally offered a strongly systemgmnyone who has designed a student coding project knows
oriented undergraduate database course, using the tRat it entails unusual effort: designing the requirements

makrishnan/Gehrke textbook. Throughout the semestatid implementing the project, monitoring the student

the course typically covers DBMS internals, traditiong@rogress and repairing bugs on the fly, and designing and
“user-level” issues like SQL and database design, andiatplementing test cases for grading the students’ efforts.
overview on topics such as web-search (IR) techniquas,Spring 2003, the Berkeley and CMU undergraduate

XML, and object-relational features. Until last year, thdatabase course staff collaborated in designing a curricu-
course used the Minibase software from Wisconsin to dym that offers hands-on experience on the code of a real
pose two- or three-student groups to the software engatabase system.

neering challenges inherent in translating textbook al
rithms into working code.

Carnegie Mellon started offering an undergradua-{é’ achieve synch.ronlzatlon, we agreed upon the same
database course in Spring 1999. The material covere %tbOOk (Ramaknshnan/Gehrke) and a similar schedule
the lectures was similar to that covered by the Berkel the entire semester. The course structure was based
course, although the Silberschatz/Korth/Sudarshan tefto" a somewhat unusual organization that has been suc-
book was used. The course projects, however, focué:@c?smny used at Berkeley in the past:
mainly on data structures and SQL applications. Intek front-loaded semester. The “heavier’, time-
ested undergraduates were encouraged to enroll to ¢basuming projects are assigned in the first half of the
entry-level graduate database course (introduced in Fallrse. Students are warned on day one that the busy
2001), that covers in-depth systems issues and selectiveiplementation work in the beginning of the semester
uses Minibase assignments as part of the course workloai.be rewarded with “think time” later on. This structure

9 Designing the Course Schedule

has proven to be very popular, since it balances bdé#st drivers, and could not be used as a functional query
the students’ and the TAsS' load across the semessgstem. Fourth, the students would wrestle with a system
— most are busy with exams and projects from othtirat they could feel to be “real”: one that is in daily use in
courses toward the end of the semester, when the datalpsaetical applications, discussed in active implementation
course workload is light. In addition, the TAs’ advisorforums, worth citing on their resumes, and architecturally
appreciate their students’ lack of conflicts at the end ahd functionally similar to commercial systems.

the semester. The staff challenges with front-loadingWe considered both of the leading open source systems:
are to prepare the assignments on time (difficult codilySQL and PostgreSQL. MySQL has the advantage of
assignments take longer to design) and to cover enowgmificant opportunities for student extension, since it ac-
material by the time the assignments are passed out. tually comes with almost none of the features taught in

A bottom-up approach. In the first few lectures the & typical DB systems course — it has no cost-based opti-
’ izer, no B+-trees, no fine-grained concurrency control,

course touches only lightly on high-level issues like dafa .
y N y gty gn-eVel 1SSUES 1 0 recovery, no hash joins, €tBy contrast, PostgreSQL

models and query languages by briefly introducing the ;
lational model and very simple SQL, contrasting it Wit'%lready has r'no'st O.f the features usually'ta.lugh't n C'?‘SS-
Fé:ourse, this it raises (surmountable) difficulties in in-

the web documents and keyword search that students)) .
familiar with. For the next several weeks. we dive intyenting assignments where students can profitably extend
’ system with new features.

system implementation issues like access methods, bu e finallv ch P SOL § ber of
management, and join algorithms. After that, we begin to e finally chose PostgreSQL for a number of reasons.

weave in deeper discussions of the relational model a'lzﬁ'BSt’ Berkeley still has extensive local expertise in the

languages, database design, normalization, and so onSydem, and CMU recently started to use it for research

is not uncommon, we save transactional issues for latePPOSes. Second, because PostgreSQL is full-featured,

the semester, when students have a good understandirﬁ}‘ﬂaqer,‘tS could consult the co_de to get a better Sense of
the entire “single-user’ database problem space. ow pieces of a real system fit together (occasionally in

Apart from being necessary to front-load the semest@{sture we showed PostgreSQL source code to highlight

the bottom-up approach helps to stress the general ap IP—?'nt)' T?'rdf’ Iltl ffelt :nco;?;s:egt o teacth abou; tthe_|mt;1
cability of storage, buffering, indexing, and query pr Jortance of a fufl-teatured database System and frain the

cessing ideas for various information systems tasks, ﬁ%‘ﬂde”ts using a limited environment such as MySQL.
cluding specifically both SQL databases and web sea&B Designing PostgreSQL Project Assignments

engines. While few students will grow up and hack on tbﬁ1e joint Berkeley/CMU team designed two program-
internals of a DBMS, more find themselves utilizing rerhing projects on “system internals”, and one on “ap-
lated ideas: buffers or caches, disk-based data structu BRation design”. These were suppllemented with writ-
pipelined dataflow operators, dynamic programming, eflgn homeworks covering SQL, normalization theory, and
Our colleagues were initially concerned that the botto ' '

. . . uery optimization. Each programming project was done
up approach gives students very little dat.a modelmg “QHa team of three students. The projects were as follows:
text for the work they do early on, counting on their in-

tuition and their willingness to “believe” that the contexBuffer manager replacement policies. As a warmup

will come clear in later lectures. The students, howev@ssignment, students were given two weeks to (a) change
have not complained about context weakness, as we tRRstgreSQL's buffer manager, replacing the default LRU

care throughout the semester to bindthe covered matefid@e replacement policy with both CLOCK and MRU, (b)
together and emphasize the big picture. gather performance results of various queries that we pro-

. vided over each of the three policies, and (c) explain their
2.2 Choosing PostgreSQL performance observations based on the conceptual discus-
We decided to use a full-fledged open-source DBMS fosin in class. The actual coding required for the assign-
number of reasons. First, the students at both schools weent was minimal: a dozen or so lines of new code span-
asking for a more “real” DBMS to work with, and this diching one “.c” file and one header file, both of which we
not seem to pose a much bigger coding challenge thedantified for them. However, the exercise exposed them
minibase. Second, the students would see a system saphe task of debugging and validating modifications to a
porting the full features of a standard relational DBMS;

. . 1 i
with a healthy exposure to the attendant complexities, 't Should be noted that MySQL can be interfaced to better storage
managers like BerkeleyDB and InnoDB for improved indexing, concur-

Th_ird: the stuQents CQU!d play with the syst@maction rency and recovery support. We felt that using more than one system
doing “real things”; Minibase only supported homeworias a poor option for educational purposes.

real system: understanding a client-server process ardtiio SQL queries, and iterate through result rows, printing
tecture and the way that a debugger is used in that contéx¢m on screen. This 2-week assignment gave students
gathering performance traces, and mapping from expeéhie flavor of the kind of web-based application develop-
mental results to concepts from class. ment that is a very common use case for database today.

Operators for query processing. In their most chal- 2-4 Evaluation
lenging project, the students had to add a new *“iteratgxt both schools, student feedback was quite positive. Dur-
to the query executor: a hash-based grouping operafag the semester, it was easy to see both qualitatively and
capable both of spilling to disk when necessary, and gfiantitatively how the PostgreSQL assignments were bet-
maintaining memory-only performance for large inputer received than Minibase had been in prior years. While
with few distinct groups. The algorithm was based afere was still discussion of subtle coding points on the
the Hybrid Cache scheme [1], modified to do groupingass newsgroup, these tended to focus on substantive
rather than function caching. The TAs made the necgystem issues (e.g., the use of a region-based memory
sary changes to teach the Postgres’ optimizer to cho@sgnager) rather than implementation details (e.g., the id-
the new iterator. The students were given a naive majpsyncratic exception handling mechanism in minibase).
memory-only hash group-by iterator as a starting pointjee Hellerstein received his highest average student rat-
already part of the latest PostgreSQL CVS repositorying for “Teaching Effectiveness” in five times teaching the
and were given three weeks to add the support for spillisgurse, and student representatives again singled out the
to disk just when necessary. course at the annual faculty retreat — this time to cheer the
The project involved understanding and implementingplacement of minibase with PostgreSQL. Natassa Aila-
a fairly complicated query processing algorithm. Perhapsaki’s ratings were also very high (no base for compari-
more challenging and useful was the required experierszmn, since this was her first undergraduate course). Nat-
interfacing with pre-existing subsystems that aren’t typwally, it is difficult to separate these results from other
ically taught in the textbooks. In order to manage thdectors — in particular, the TAs for the course this out-
hashtables, students had to understand a region-basgdwere especially dedicated. However, our feeling is
memory allocator package — a ubiquitous subsystemtirat the use of the same “real” system for both “internals”
any real DBMS that is rarely discussed in classes. In ordesignments and for application assignments as well as
to manage the disk, they had to understand the temporahg front-loaded course structure left the students with a
relation I/O interfaces in PostgreSQL. In order to supparhique sense of accomplishment.
aggregation in a generic way, they had to understandit_g Course Materials
structure as a triple of functions to initialize storage, ac-

cumulate tuples into an opaque temporary object, and@eUrse materials — in particular the PostgreSQL
nalize the result tuple. Finally, the data they were hagif©ject handouts — are available for viewing at
ing, manipulating and storing was in PostgreSQL’s natifitp://db.cs.berkeley.edu/dbcourse and at

in-memory tuple format, and they had to understand tREP:/www-2.cs.cmu.edu/"natassa/15-415 :
routines to work with that format. After getting the codgurther materials, including homework: solutions and
working, they were again given a workload to run so th&jad'”g scripts, are available to instructors upon request.
could measure the tradeoffs between hash-based and gatknowledgments

based grouping, and explain these tradeoffs based on

. . HJ\% PostgreSQL internals projects were designed collab-
conceptual discussion in class.

oratively by teams at Berkeley and CMU. The Berkeley

A web-based application. At Berkeley, students im-teéam consisted of Mike Franklin, Joe Hellerstein, Ryan
p|emented a package_tracking app“caﬂmh@ UPS or Huebsch, Sailesh Krishnamurt.hy, Boon Thau LOC.) and LI
FedEX) running off a live database server, whereas CMipuang. The CMU team consisted of Natassa Ailamaki,
students were asked to implement an application for USiPiros Papadimitriou, Minglong Shao, and Joe Trdinich.
versity movies, in which users would register and pthe CMU team cordially thanks Christos Faloutsos for his
movie ratings and comments. For both applicatiori§put and encouragement.
the students were given stock Apache and PostgreSRkferences
servers, the database schema, and the HTML pages forJ M. Hellerstein and J. F. Naughton. Query E o Techni

: . M. Hellerstein an . F. Naughton. Query Execution Techniques
thekpresentathn of query _forms abndd;ezu_lt pa%es. Th%]r for Caching Expensive Methods. Rroc. ACM-SIGMOD Interna-
task was to write PHP scripts embedded into the HTML jona) conference on Management of Dapeges 423424, Mon-
to connect to the database, translate the HTML forms treal, June 1996.

