
Issues in Data Stream Management∗

Lukasz Golab and M. Tamer Özsu

University of Waterloo, Canada

{lgolab, tozsu}@uwaterloo.ca

Abstract

Traditional databases store sets of relatively static
records with no pre-defined notion of time, unless
timestamp attributes are explicitly added. While this
model adequately represents commercial catalogues
or repositories of personal information, many current
and emerging applications require support for on-
line analysis of rapidly changing data streams. Lim-
itations of traditional DBMSs in supporting stream-
ing applications have been recognized, prompting re-
search to augment existing technologies and build
new systems to manage streaming data. The purpose
of this paper is to review recent work in data stream
management systems, with an emphasis on appli-
cation requirements, data models, continuous query
languages, and query evaluation.

1 Introduction

Traditional databases have been used in applications
that require persistent data storage and complex
querying. Usually, a database consists of a set of
objects, with insertions, updates, and deletions oc-
curring less frequently than queries. Queries are exe-
cuted when posed and the answer reflects the current
state of the database. However, the past few years
have witnessed an emergence of applications that do
not fit this data model and querying paradigm. In-
stead, information naturally occurs in the form of a
sequence (stream) of data values; examples include
sensor data [10], Internet traffic [36, 61], financial
tickers [17, 72], on-line auctions [3], and transaction
logs such as Web usage logs and telephone call records
[21].

A data stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the or-
der in which items arrive, nor is it feasible to locally
store a stream in its entirety. Likewise, queries over

∗This research is partially supported by the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada.

streams run continuously over a period of time and
incrementally return new results as new data arrive.
These are known as long-running, continuous, stand-

ing, and persistent queries [17, 48]. The unique char-
acteristics of data streams and continuous queries dic-
tate the following requirements of data stream man-
agement systems:

• The data model and query semantics must al-
low order-based and time-based operations (e.g.
queries over a five-minute moving window).

• The inability to store a complete stream suggests
the use of approximate summary structures, re-
ferred to in the literature as synopses [6] or di-

gests [72]. As a result, queries over the sum-
maries may not return exact answers.

• Streaming query plans may not use blocking op-
erators that must consume the entire input be-
fore any results are produced.

• Due to performance and storage constraints,
backtracking over a data stream is not feasible.
On-line stream algorithms are restricted to mak-
ing only one pass over the data.

• Applications that monitor streams in real-time
must react quickly to unusual data values.

• Long-running queries may encounter changes in
system conditions throughout their execution
lifetimes (e.g. variable stream rates).

• Shared execution of many continuous queries is
needed to ensure scalability.

Proposed data stream systems resemble the ab-
stract architecture shown in Figure 1. An input mon-
itor may regulate the input rates, perhaps by drop-
ping packets. Data are typically stored in three par-
titions: temporary working storage (e.g. for window
queries), summary storage for stream synopses, and
static storage for meta-data (e.g. physical location
of each source). Long-running queries are registered

SIGMOD Record, Vol. 32, No. 2, June 2003 5

Input
Monitor

Output
Buffer

Streaming
Inputs

Streaming
Outputs

Query
Processor

Query
Reposi-

tory

Working
Storage

Summary
Storage

Static
Storage

User
Queries

Updates to
Static Data

Figure 1: Abstract reference architecture for a data
stream management system.

in the query repository and placed into groups for
shared processing, though one-time queries over the
current state of the stream may also be posed. The
query processor communicates with the input moni-
tor and may re-optimize the query plans in response
to changing input rates. Results are streamed to the
users or temporarily buffered.

In this paper, we review recent work in data stream
processing, including data models, query languages,
continuous query processing, and query optimization.
Related surveys include Babcock et al. [6], which dis-
cusses stream processing issues in the context of the
STREAM project, and a tutorial by Garofalakis et
al. [31], which reviews algorithms for data streams.
An extended version of this survey [39] includes more
details.

The remainder of this paper surveys requirements
of streaming applications (Section 2), models and
query languages for data streams (Section 3), stream-
ing operators (Section 4), and query processing and
optimization (Section 5). We conclude in Section 6
with a list of academic projects related to data stream
management.

2 Streaming Applications

We begin by reviewing a collection of data stream ap-
plications in order to define a set of query types that
a data stream management system should support;
more examples may be found in [60, 65].

2.1 Sensor Networks

Sensor networks may be used in various monitoring
applications that involve complex filtering and acti-
vation of an alarm in response to unusual conditions.
Aggregation and joins over multiple streams are re-
quired to analyze data from many sources, while ag-
gregation over a single stream may be needed to com-
pensate for individual sensor failures. Representative

queries include the following:

• Drawing temperature contours on a weather

map: Perform a join of temperature streams (on
the temperature attribute) produced by weather
monitoring stations. Join the results with a
static table containing the latitude and longitude
of each station, and connect all points that have
reported the same temperature with lines.

• Analyze a stream of recent power usage statistics
reported to a power station (group by location,
e.g. city block), and adjust the power generation
rate if necessary [18].

2.2 Network Traffic Analysis

Ad-hoc systems for analyzing Internet traffic in near-
real time are already in use to compute traffic statis-
tics and detect critical conditions (e.g. congestion and
denial of service) [22, 36, 61]. Monitoring popular
source and destination addresses is particularly im-
portant as Internet traffic patterns are believed to
obey the Power Law distribution, meaning that most
of the bandwidth is consumed by a small set of heavy
users. Example queries include:

• Traffic matrices: Determine the total amount of
bandwidth used by each source-destination pair,
and group by protocol type or subnet mask.

• Compare the number of distinct source-
destination pairs in the (logical) streams con-
taining the second and third steps, respectively,
of the three-way TCP handshake. If the counts
differ by a large margin, then a denial-of-service
attack may be taking place.

2.3 Financial Tickers

On-line analysis of stock prices involves discovering
correlations, identifying trends and arbitrage oppor-
tunities, and forecasting future values [72]. The fol-
lowing are typical queries [63]:

• High Volatility with Recent Volume Surge: Find
all stocks priced between $20 and $200, where
the spread between the high tick and the low tick
over the past 30 minutes is greater than 3% of
the last price, and where in the last 5 minutes the
average volume has surged by more than 300%.

• NASDAQ Large Cap Gainers: Find all NAS-
DAQ stocks trading above their 200-day moving
average with a market cap greater than $5 Bil-
lion that have gained in price today by at least
2%, and are within 2% of today’s high.

6 SIGMOD Record, Vol. 32, No. 2, June 2003

2.4 Transaction Log Analysis

On-line mining of Web usage logs, telephone call
records, and Automated Bank Machine transactions
also conform to the data stream model. The goal is
to find interesting customer behaviour patterns, iden-
tify suspicious spending behaviour that could indicate
fraud, and forecast future data values. The following
are some examples:

• Examine Web server logs in real-time and re-
route users to backup servers if the primary
servers are overloaded.

• Roaming diameter [21]: Mine cellular phone
records and for each customer, determine the
greatest number of distinct base stations used
during one telephone call.

2.5 Analysis of Requirements

The preceding examples show significant similarities
in data models and basic operations across applica-
tions (and some differences related to workload char-
acteristics, such as stream arrival rates or the amount
of historical data needed). We list below a set of fun-
damental continuous query operations over stream-
ing data, keeping in mind that new streaming appli-
cations, possibly with additional requirements, will
likely be proposed in the future.

• Selection: All streaming applications require
support for complex filtering.

• Nested aggregation: Complex aggregates, includ-
ing nested aggregates (e.g. comparing a mini-
mum with a running average) are needed to com-
pute trends in the data.

• Multiplexing and demultiplexing : These are sim-
ilar to group-by and union, respectively, and are
used to decompose and merge logical streams.

• Frequent item queries: These are also known as
top-k or threshold queries, depending on the cut-
off condition.

• Stream mining : Operations such as pattern
matching, similarity searching, and forecasting
are needed for on-line mining of streaming data.

• Joins: Support should be included for multi-
stream joins and joins of streams with static
meta-data.

• Windowed queries: All of the above query types
may be constrained to return results inside a
window (e.g. the last 24 hours or the last one
hundred packets).

3 Data Models and Query Lan-

guages for Streams

The above requirements demand specific features to
be included in the data models and query languages
for data streams. In this section, we survey the pro-
posed models and languages.

3.1 Data Models

A real-time data stream is a sequence of data items
that arrive in some order and may be seen only once.
Since items may arrive in bursts, a data stream may
instead be modeled as a sequence of lists of ele-
ments [64]. Individual stream items may take the
form of relational tuples or instantiations of objects.
In relation-based models (e.g. STREAM [56]), items
are transient tuples stored in virtual relations, possi-
bly horizontally partitioned across remote nodes. In
object-based models (e.g. COUGAR [10] and Tribeca
[61]), sources and item types are modeled as hierar-
chical data types with associated methods.

In many cases, only an excerpt of a stream is of in-
terest at any given time, giving rise to window mod-
els, which may be classified according the the follow-
ing three criteria [14, 33]:

1. Direction of movement of the endpoints: Two
fixed endpoints define a fixed window, two slid-
ing endpoints (either forward or backward, re-
placing old items as new items arrive) define a
sliding window, while one fixed endpoint and one
moving endpoint (forward or backward) define a
landmark window.

2. Physical vs. logical: Physical, or time-based win-
dows are defined in terms of a time interval, while
logical, (also known as count-based) windows are
defined in terms of the number of tuples.

3. Update interval: Eager re-evaluation updates the
window upon arrival of each new tuple, while
batch processing (lazy re-evaluation) induces a
“jumping window”. If the update interval is
larger than the window size, the result is a series
of non-overlapping tumbling windows [11].

3.2 Continuous Query Semantics

Assume for simplicity that time is represented as a
sequence of integers. Let A(Q, t) be the answer set of
a continuous query Q at time t, τ be the current time,
and 0 be the starting time. If a continuous query is
monotonic, it suffices to re-evaluate the query over
newly arrived items and append qualifying tuples to

SIGMOD Record, Vol. 32, No. 2, June 2003 7

the result. Thus, the answer set of a monotonic con-
tinuous query Q at time τ is [3]:

A(Q, τ) =

τ⋃

t=1

(A(Q, t) − A(Q, t − 1)) ∪ A(Q, 0) (1)

In contrast, non-monotonic queries may need to be
re-computed from scratch during every re-evaluation,
giving rise to the following semantics [3]:

A(Q, τ) =

τ⋃

t=0

A(Q, t) (2)

3.3 Stream Query Languages

Three querying paradigms for streaming data have
been proposed: relation-based, object-based, and
procedural. We briefly describe each group below.

3.3.1 Relation-based Languages

Three proposed relation-based languages are CQL
[3, 56], StreaQuel [12, 14], and AQuery [47], each
of which has SQL-like syntax and enhanced support
for windows and ordering. CQL (Continuous Query
Language) is used in the STREAM system, and con-
siders streams and windows to be relations ordered
by timestamp. Relation-to-stream operators are pro-
vided to convert query results to streams. With these
operators, the user may explicitly specify the query
semantics, as defined in Equations (1) and (2). Addi-
tionally, the sampling rate may be explicitly defined,
e.g. ten percent, by following a reference to a stream
with the statement 10 % SAMPLE.

StreaQuel, the query language used in Tele-
graphCQ, also provides advanced windowing capa-
bilities, and does not require any relation-to-stream
operators as it considers all query inputs and outputs
to be streams. Each StreaQuel query is followed by
a for-loop construct with a variable t that iterates
over time. The loop contains a WindowIs statement
that specifies the type and size of the window. Let S
be a stream and NOW be the current time. To spec-
ify a sliding window over S with size five that should
run for fifty time units, the following for-loop may be
appended to the query (note that changing the for-
loop increment condition to t=t+5 causes the query
to re-execute every five time units):

for(t=NOW; t<NOW+50; t++)

WindowIs(S, t-4, t)

AQuery consists of a query algebra and an SQL-
based language for ordered data. Table columns are
treated as arrays, on which order-dependent opera-
tors such as next, previous (abbreviated prev), first,

and last may be applied. For example, a continu-
ous query over a stream of stock quotes that reports
consecutive price differences of IBM stock may be
specified as follows:

SELECT price - prev(price)

FROM Trades WHERE company = ’IBM’

3.3.2 Object-based Languages

One approach to object-oriented stream modeling is
to classify stream elements according to a type hier-
archy. This method is used in the Tribeca network
monitoring system, which implements Internet pro-
tocol layers as hierarchical data types [61]. Another
possibility is to model the sources as ADTs, as in
the COUGAR sensor database [10]. Each type of
sensor is modeled by an ADT, whose interface con-
sists of the sensor’s signal processing methods. The
proposed query language has SQL-like syntax and
also includes a $every() clause that indicates the
query re-execution frequency; however, few details on
the language are available in the published literature
(which is why we do not include it in Table 1).

3.3.3 Procedural Languages

An alternative to declarative query languages is to
let the user specify the data flow. In the procedural
language of the Aurora system [11], users construct
query plans via a graphical interface by arranging
boxes (corresponding to query operators) and joining
them with directed arcs to specify data flow, though
the system may later re-arrange, add, or remove oper-
ators in the optimization phase. Aurora includes sev-
eral operators that are not explicitly defined in other
languages: map applies a function to each item (this
operator is also defined in AQuery, where it is called
“each”), resample interpolates values of missing items
within a window, while drop randomly drops items if
the input rate is too high.

3.3.4 Comments on Query Languages

Table 1 summarizes the proposed streaming query
languages. Note that periodic execution refers to al-
lowing the users to specify how often to refresh re-
sults. All languages (especially StreaQuel) include
extensive support for windowing. In comparison
with the list of fundamental query operators in Sec-
tion 3.3, all required operators except top-k and pat-
tern matching are explicitly defined in all the lan-
guages. Nevertheless, user-defined aggregates should
make it possible to define pattern-matching func-
tions and extend the language to accommodate fu-
ture streaming applications. Overall, relation-based

8 SIGMOD Record, Vol. 32, No. 2, June 2003

Language/ Motivating Allowed Basic Supported windows Custom
system applications inputs operators type base execution operators?

AQuery stock quotes, sorted relational, “each”, fixed, time not via “each”
network traffic relations order-dependent landmark, and discussed operator

analysis (first, next, etc.) sliding, count in [47]

Aurora sensor data streams σ,π,∪,./, group-by, fixed, time streaming via map
only resample, drop, landmark, and operator

map, window sort sliding count

CQL/ all-purpose streams relational, currently time streaming allowed
STREAM and relation-to-stream, only and

relations sample sliding count

StreaQuel/ sensor data streams relational all time streaming allowed
TelegraphCQ and types and or

relations count periodic

Tribeca network single σ, π, fixed, time streaming allows
traffic input group-by, union landmark, and custom

analysis stream aggregates sliding count aggregates

Table 1: Summary of existing and proposed data stream languages.

languages with additional support for windowing and
sequencing appear to be the most popular paradigm
at this time.

4 Implementing Streaming Op-

erators

In this section, we discuss issues in implement-
ing streaming operators, including non-blocking be-
haviour, approximations, and sliding windows. Note
that simple operators such as projection and selection
(that do not keep state information) may be used in
streaming queries without any modifications.

4.1 Non-blocking Operators

Recall that some relational operators are blocking.
For instance, prior to returning the next tuple,
the Nested Loops Join (NLJ) may potentially scan
the entire inner relation and compare each tuple
therein with the current outer tuple. Three gen-
eral techniques exist for unblocking stream opera-
tors: windowing, incremental evaluation, and exploit-
ing stream constraints.

Any operator can be unblocked by restricting its
range to a finite window, so long as the window fits
in memory. To avoid re-scanning the entire window
(or stream), streaming operators must be incremen-
tally computable. For example, aggregates such as
AVERAGE [68] may be incrementally updated by main-
taining the cumulative sum and item count. Simi-
larly, a pipelined hash join [66, 69] is a non-blocking
join operator, which builds hash tables on-the-fly for

each of the participating relations. When a tuple
from one of the relations arrives, it is inserted into
its table and the other tables are probed for matches.
However, an infinite stream may not be buffered in
its entirety, so both windowing and incremental eval-
uation must be applied (see [2] for a discussion of
memory requirements of continuous queries).

Another way to unblock query operators is to ex-
ploit stream constraints. Schema-level constraints in-
clude synchronization among timestamps in multiple
streams, clustering (duplicates arrive contiguously),
and ordering [9, 37, 56]. Constraints at the data level
may take the form of control packets inserted into a
stream (referred to as punctuations in [64]), which
specify any conditions that will hold for all future
items, e.g. no other tuples with timestamp smaller
than τ will be produced by a given source. There
are several open problems concerning punctuations—
given an arbitrary query, is there a punctuation that
unblocks this query? If so, is there an efficient algo-
rithm for finding this punctuation?

4.2 Approximate Algorithms

If none of the above unblocking conditions are satis-
fied, compact stream summaries may be stored and
approximate queries may be posed over the sum-
maries. This implies a trade-off between accuracy
and the amount of memory used to store stream
summaries, with an additional restriction that the
processing time per item (amortized) should be kept
small. We classify approximate algorithms in the in-
finite stream model according to the method of gen-
erating synopses:

SIGMOD Record, Vol. 32, No. 2, June 2003 9

• Counting methods, used to compute quantiles
and frequent item sets, store frequency counts
of selected item types (perhaps chosen by sam-
pling) along with error bounds on their true fre-
quencies, e.g. [25, 40, 54].

• Hashing methods are generally used with count-
ing or sampling, e.g. for finding frequent items
in a stream [27, 30].

• Sampling methods compute various aggregates to
within a known error bound, but may not be
applicable in some cases (e.g. finding a maximum
element in a stream). Examples include [25, 27,
34, 54, 55].

• Sketches are used in various aggregate queries.
Sketching involves taking an inner product of a
function of interest (e.g. item frequencies) with
a vector of random values chosen from some dis-
tribution with a known expectation. Some ex-
amples include [1, 15, 20, 26, 29, 33, 37].

• Wavelet transforms that reduce the underlying
signal to a small set of coefficients have been
proposed to approximate aggregates over infinite
streams, e.g. [32, 37, 41].

4.3 Data Stream Mining

On-line stream mining operators must be incremen-
tally updatable without making multiple passes over
the data. Recent results in (approximate) algo-
rithms for on-line stream mining include computing
stream signatures and representative trends [21], de-
cision trees [44], forecasting [71], k-medians clustering
[16, 42], nearest neighbour queries [46], and regression
analysis [18]. A comprehensive discussion of similar-
ity detection, pattern matching, and forecasting in
sensor data mining may be found in [28].

4.4 Sliding Window Algorithms

Many infinite stream algorithms do not have obvi-
ous counterparts in the sliding window model. For
instance, while computing the maximum value in an
infinite stream is trivial, doing so in a sliding window
of size N requires Ω(N) space—consider a sequence
of non-increasing values, in which the maximum item
is always expired when the window moves forward.
Thus, the fundamental problem is that as new items
arrive, old items must be simultaneously evicted.

In addition to windowed sampling [7], a possible
solution to computing sliding window queries in sub-
linear space is to divide the window into small por-
tions (called basic windows in [72]) and only store a

synopsis and a timestamp for each portion. When
the timestamp of the oldest basic window expires,
its synopsis is removed, a fresh window is added
to the front, and the aggregate is incrementally re-
computed. This method may be used to compute
correlations between streams [72], find frequently ap-
pearing items [24], and compute various aggregates
[8, 23, 35]. However, some window statistics may not
be incrementally computable from a set of synopses.

The symmetric hash join [69] and an analogous
symmetric NLJ may be extended to operate over two
[45] or more [38] sliding windows by periodically scan-
ning the hash tables (or whole windows) and remov-
ing stale items. Interesting trade-offs appear in that
large hash tables are expensive to maintain if tuple
expiration is performed too frequently [38].

5 Continuous Query Process-

ing and Optimization

We now discuss problems related to processing and
optimizing continuous queries. In what follows, we
outline emerging research in cost metrics, query
plans, quality-of-service guarantees, and distributed
optimization of streaming queries.

5.1 Cost Metrics and Statistics

Traditional cost metrics do not apply to (possibly ap-
proximate) continuous queries over infinite streams,
where processing cost per-unit-time is more appro-
priate [45]. Below, we list possible cost metrics for
streaming queries along with necessary statistics that
must be maintained.

• Accuracy and reporting delay vs. memory usage:
Sampling and load shedding [62] may be used
to decrease memory usage by increasing the er-
ror. It is necessary to know the accuracy of each
operator as a function of the available memory,
and how to combine such functions to obtain
the overall accuracy of a plan. Furthermore,
batch processing [6] may be done instead of re-
evaluating a query whenever a new item arrives.

• Output rate: If the stream arrival rates and out-
put rates of query operators are known, it is pos-
sible to optimize for the highest output rate or
to find a plan that takes the least time to output
a given number of tuples [67].

• Power usage: In a wireless network of battery-
operated sensors, energy consumption may be
minimized if each sensor’s power consumption

10 SIGMOD Record, Vol. 32, No. 2, June 2003

characteristics (when transmitting and receiv-
ing) are known [51, 70].

5.2 Continuous Query Plans

In relational DBMSs, all operators are pull-based: an
operator requests data from one of its children in the
plan tree only when needed. In contrast, stream op-
erators consume data pushed to the system by the
sources. One approach to reconcile these differences,
as considered in Fjords [49] and STREAM [6], is
to connect operators with queues, allowing sources
to push data into a queue and operators to retrieve
data as needed. Since queues may overflow, operators
should be scheduled so as to minimize queue sizes and
queuing delays [5]. Another challenge in continuous
query plans deals with supporting historical queries.
Designing disk-based data structures and indices to
exploit access patterns of stream archives is an open
problem [12].

5.3 Processing Multiple Queries

Two approaches have been proposed to execute sim-
ilar continuous queries together: sharing query plans
[17] and indexing query predicates [13, 52]. In the
former, queries belonging to the same group share a
plan, which produces the union of the results needed
by each query in the group. A final selection is then
applied to the shared result set. Problems include
dynamic re-grouping as new queries are added to the
system, and shared evaluation of windowed joins with
various window sizes [43].

In the indexing approach, query predicates are
stored in a table. When a new tuple arrives for pro-
cessing, its attribute values are extracted and looked
up in the query table to see which queries are satis-
fied by this tuple. Data and queries are treated as
duals, reducing query processing to a multi-way join
of the predicate table with the data tables. The in-
dexing approach works well for queries with simple
boolean predicates, but is currently not applicable
to, e.g. windowed aggregates [13].

5.4 Query Optimization

5.4.1 Query Rewriting

A useful rewriting technique in relational databases
deals with re-ordering a sequence of binary joins in
order to minimize a particular cost metric. There
has been some preliminary work in join ordering for
data streams in the context of the rate-based model
[67] and in main-memory window joins [38]. In gen-
eral, each of the query languages outlined in Section 3

introduces some new rewritings, e.g. commutativity
of selections and projections over sliding windows
[3, 14].

5.4.2 Adaptivity

The cost of a query plan may change for three rea-
sons: change in processing time of an operator,
change in selectivity of a predicate, and change in the
arrival rate of a stream [4]. Consequently, instead
of maintaining a rigid tree-structured query plan,
the Eddies approach (introduced in [4], extended to
multi-way joins in [58], and applied to continuous
queries in [13, 52]) performs scheduling of each tu-
ple separately by routing it through the operators
that make up the query plan. In effect, the query
plan is dynamically re-ordered to match current sys-
tem conditions. This is accomplished by tuple rout-
ing policies that attempt to discover which operators
are fast and selective, and those operators are sched-
uled first. There is, however, an important trade-off
between the resulting adaptivity and the overhead
required to route each tuple separately.

5.5 Distributed Query Processing

In sensor networks, Internet traffic analysis, and Web
usage logs, multiple data streams arrive from remote
sources. Distributed optimization strategies aim at
decreasing communication costs by re-ordering query
operators across sites [19, 59] and performing simple
query functions (e.g. filtering or aggregation) locally
at a sensor or a network router [22, 50, 53, 70]. For
example, if each node pre-aggregates its results by
sending to the central node the sum and count of its
values, the co-ordinator may then take the cumulative
sum and cumulative count, and compute the overall
average. A similar technique involves sending up-
dates to the central node only if new data values differ
significantly from previously reported values [57].

Some optimization techniques have been designed
specifically for ad-hoc wireless sensor networks in or-
der to decrease communication costs, extend battery
life, and deal with poor wireless connectivity [50, 53].
These techniques make use of the fact that query dis-
semination and result collection in a wireless sensor
network proceed along a routing tree (or a DAG) via
a shared wireless channel. For example, if a sensor
reports its maximum local value x in response to a
MAX query, a neighbouring sensor that overhears this
transmission need not respond if its local maximum
is smaller than x. Moreover, a sensor could broad-
cast redundant copies of its maximum value to all
of its neighbours in order to minimize the chances of

SIGMOD Record, Vol. 32, No. 2, June 2003 11

packet loss (at a cost of increased bandwidth and bat-
tery usage). However, this does not work for other
aggregates such as SUM and COUNT, as duplicate values
would contaminate the result. In these cases, a sen-
sor may “split” its local sum and send partial sums
to each of its neighbours. Even if one packet is lost,
the remainder of the sum should still reach the root.

6 Conclusions

Designing an effective data stream management sys-
tem requires extensive modifications of nearly every
part of a traditional database, creating many inter-
esting database problems such as adding time, or-
der, and windowing to data models and query lan-
guages, implementing approximate operators, com-
bining push-based and pull-based operators in query
plans, adaptive query re-optimization, and dis-
tributed query processing. Recent interest in these
problems has generated a number of academic
projects. There exist at least the following systems:

• Aurora [11, 19] is a workflow-oriented
system that allows users to build query
plans by arranging boxes (operators)
and arrows (data flow among operators).
http://www.cs.brown.edu/research/aurora.

• COUGAR [10, 70] is a sensor
database that models sensors as ADTs
and their output as time series.
http://www.cs.cornell.edu/database/cougar.

• Gigascope [22] is a distributed network moni-
toring architecture that proposes pushing some
query operators to the sources (e.g. routers).

• NiagaraCQ [17] is a continuous query sys-
tem that allows continuous XML-QL queries
to be posed over dynamic Web content.
http://www.cs.wisc.edu/niagara.

• OpenCQ [48] is another continuous query sys-
tem for monitoring streaming Web content. Its
focus is on scalable event-driven query process-
ing. http://disl.cc.gatech.edu/CQ

• StatStream [72] is a stream monitor-
ing system designed to compute on-
line statistics across many streams.
http://cs.nyu.edu/cs/faculty/shasha/

papers/statstream.html.

• STREAM [56] is an all-purpose relation-based
system with an emphasis on memory man-
agement and approximate query answering.
http://www-db.stanford.edu/stream.

• TelegraphCQ [12] is a continuous query pro-
cessing system that focuses on shared query
evaluation and adaptive query processing
http://telegraph.cs.berkeley.edu.

• Tribeca [61] is an early on-line Internet traffic
monitoring tool.

References

[1] N. Alon, Y. Matias, M. Szegedy. The Space Com-
plexity of Approximating the Frequency Moments.
In Proc. ACM Symp. on Theory of Computing, 1996,
pp. 20–29.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, J.
Widom. Characterizing Memory Requirements for
Queries over Continuous Data Streams. In Proc.

ACM Symp. on Principles of Database Systems,
2002, pp. 221–232.

[3] A. Arasu, S. Babu, J. Widom. An Abstract Seman-
tics and Concrete Language for Continuous Queries
over Streams and Relations. Technical Report, Nov.
2002. dbpubs.stanford.edu:8090/pub/2002-57.

[4] R. Avnur, J. Hellerstein. Eddies: Continuously
Adaptive Query Processing. In Proc. ACM Int. Conf.

on Management of Data, 2000, pp. 261–272.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani. Chain:
Operator Scheduling for Memory Minimization in
Data Stream Systems. To appear in Proc. ACM Int.

Conf. on Management of Data, June 2003.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, J.
Widom. Models and Issues in Data Streams. In
Proc. ACM Symp. on Principles of Database Sys-

tems, 2002, pp. 1–16.

[7] B. Babcock, M. Datar, R. Motwani. Sampling from
a Moving Window over Streaming Data. In Proc.

SIAM-ACM Symp. on Discrete Algorithms, 2002,
pp. 633–634.

[8] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan.
Maintaining Variance and k-Medians over Data
Stream Windows. To appear in Proc. ACM Symp.

on Principles of Database Systems, June 2003.

[9] S. Babu, J. Widom. Exploiting k-Constraints to
Reduce Memory Overhead in Continuous Queries
over Data Streams. Technical Report, Nov. 2002.
dbpubs.stanford.edu:8090/pub/2002-52.

[10] P. Bonnet, J. Gehrke, P. Seshadri. Towards Sensor
Database Systems. In Proc. Int. Conf. on Mobile

Data Management, 2001, pages 3–14.

[11] D. Carney, U. Cetinternel, M. Cherniack, C. Con-
vey, S. Lee, G. Seidman, M. Stonebraker, N. Tat-
bul, S. Zdonik. Monitoring streams—A New Class of
Data Management Applications. In Proc. Int. Conf.

on Very Large Data Bases, 2002, pp. 215–226.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M.
J. Franklin, J. M. Hellerstein, W. Hong, S. Krishna-
murthy, S. Madden, V. Raman, F. Reiss, M. Shah.
TelegraphCQ: Continuous Dataflow Processing for

12 SIGMOD Record, Vol. 32, No. 2, June 2003

an Uncertain World. In Proc. Conf. on Innovative

Data Syst. Res, 2003, pp. 269–280.

[13] S. Chandrasekaran, M. J. Franklin. Streaming
Queries over Streaming Data. In Proc. Int. Conf. on

Very Large Data Bases, 2002, pp. 203–214.

[14] S. Chandrasekaran, S. Krishnamurthy, S. Madden,
A. Deshpande, M. J. Franklin, J. M. Hellerstein,
M. Shah. Windows Explained, Windows Expressed.
2003. www.cs.berkeley.edu/~sirish/research/

streaquel.pdf.

[15] M. Charikar, K. Chen, M. Farach-Colton. Finding
frequent items in data streams. In Proc. Int. Collo-

quium on Automata, Languages and Programming,
2002, pp. 693–703.

[16] M. Charikar, L. O’Callaghan, R. Panigrahy. Better
Streaming Algorithms for Clustering Problems. To
appear in Proc. ACM Symp. on Theory of Comput-

ing, June 2003.

[17] J. Chen, D. DeWitt, F. Tian, Y. Wang. NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. In Proc. ACM Int. Conf. on Management

of Data, 2000, pp. 379–390.

[18] Y. Chen, G. Dong, J. Han, B. W. Wah, J. Wang.
Multi-Dimensional Regression Analysis of Time-
Series Data Streams. In Proc. Int. Conf. on Very

Large Data Bases, 2002, pp. 323–334.

[19] M. Cherniack, H. Balakrishnan, M. Balazinska, D.
Carney, U. Cetintemel, Y. Xing, S. Zdonik. Scalable
Distributed Stream Processing. In Proc. Conf. on In-

novative Data Syst. Res, 2003.

[20] G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan.
Comparing Data Streams Using Hamming Norms
(How to Zero In). In Proc. Int. Conf. on Very Large

Data Bases, 2002, pp. 335–345.

[21] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F.
Smith. Hancock: A Language for Extracting Signa-
tures from Data Streams. In Proc. ACM Int. Conf.

on Knowledge Discovery and Data Mining, 2000, pp.
9–17.

[22] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O.
Spatscheck. GigaScope: High Performance Network
Monitoring with an SQL Interface. In Proc. ACM

Int. Conf. on Management of Data, 2002, p. 623.

[23] M. Datar, A. Gionis, P. Indyk, R. Motwani. Main-
taining Stream Statistics over Sliding Windows. In
Proc. SIAM-ACM Symp. on Discrete Algorithms,
2002, pp. 635–644

[24] D. DeHaan, E. D. Demaine, L. Golab, A. Lopez-
Ortiz, J. I. Munro. Towards Identifying Frequent
Items in Sliding Windows. Technical Report, March
2003. db.uwaterloo.ca/~lgolab/frequent.pdf.

[25] E. Demaine, A. Lopez-Ortiz, J. I. Munro. Frequency
Estimation of Internet Packet Streams with Lim-
ited Space. In Proc. European Symp. on Algorithms,
2002, pp. 348–360.

[26] A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi.
Processing Complex Aggregate Queries over Data
Streams. In Proc. ACM Int. Conf. on Management

of Data, 2002, pp. 61–72.

[27] C. Estan, G. Varghese. New Directions in Traffic
Measurement and Accounting. In Proc. ACM SIG-

COMM Internet Measurement Workshop, 2001, pp.
75–80.

[28] C. Faloutsos. Sensor Data Mining: Similarity Search
and Pattern Analysis. Tutorial in Proc. Int. Conf. on

Very Large Data Bases, 2002.
[29] J. Feigenbaum, S. Kannan, M. Strauss, M.

Viswanathan. An Approximate L1-Difference Algo-
rithm for Massive Data Streams. In Proc. Symp. on

Foundations of Computer Science, 1999. pp. 501–
511.

[30] P. Flajolet, G. N. Martin. Probabilistic Counting. In
Proc. Symp. on Foundations of Computer Science,
1983, pp. 76–82, 1983.

[31] M. Garofalakis, J. Gehrke, R. Rastogi. Querying and
Mining Data Streams: You Only Get One Look. Tu-
torial in ACM Int. Conf. on Management of Data,
2002.

[32] M. Garofalakis, P. Gibbons. Wavelet Synopses with
Error Guarantees. In Proc. ACM Int. Conf. on Man-

agement of Data, 2002, pp. 476–487.
[33] J. Gehrke, F. Korn, D. Srivastava. On Comput-

ing Correlated Aggregates Over Continual Data
Streams. In Proc. ACM Int. Conf. on Management

of Data, 2001, pp. 13–24.
[34] P. Gibbons, S. Tirthapura. Estimating Simple Func-

tions on the Union of Data Streams. In Proc. ACM

Symp. on Parallel Algorithms an Architectures, 2001,
pp. 281–291.

[35] P. Gibbons, S. Tirthapura. Distributed Streams Al-
gorithms for Sliding Windows. In Proc. ACM Symp.

on Parallel Algorithms and Architectures, 2002, pp.
63–72.

[36] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. J.
Strauss. QuickSAND: Quick Summary and Analy-
sis of Network Data. Technical Report, Dec. 2001.
citeseer.nj.nec.com/gilbert01quicksand.html

[37] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.
J. Strauss. Surfing Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries. In
Proc. Int. Conf. on Very Large Data Bases, 2001,
pp. 79–88.

[38] L. Golab, M. T. Özsu. Processing Sliding Win-
dow Multi-Joins in Continuous Queries over
Data Streams. Technical Report, Feb. 2003.
db.uwaterloo.ca/~ddbms/publications/stream/

multijoins.pdf.
[39] L. Golab, M. T. Özsu. Data Stream Management

Issues – A Survey. Technical Report, Apr. 2003.
db.uwaterloo.ca/~ddbms/publications/stream/

streamsurvey.pdf.
[40] J. Greenwald, F. Khanna. Space Efficient On-Line

Computation of Quantile Summaries. In Proc. ACM

Int. Conf. on Management of Data, 2001, pp. 58–66.

[41] S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss.
Histogramming Data Streams with Fast Per-Item
Processing. In Proc. Int. Colloquium on Automata,

Languages and Programming, 2002, pp. 681–692.

SIGMOD Record, Vol. 32, No. 2, June 2003 13

[42] S. Guha, N. Mishra, R. Motwani, L. O’Callaghan.
Clustering Data Streams. In Proc. IEEE Symp. on

Foundations of Computer Science, pp. 359–366.
[43] M. A. Hammad, M. J. Franklin, W. G. Aref, A.

K. Elmagarmid. Scheduling for shared window joins
over data streams. Submitted for publication, Feb.
2003.

[44] G. Hulten, L. Spencer, P. Domingos. Mining Time-
Changing Data Streams. In Proc. ACM Int. Conf.

on Knowledge Discovery and Data Mining, 2001, pp.
97–106.

[45] J. Kang, J. Naughton, S. Viglas. Evaluating Window
Joins over Unbounded Streams. To appear in Proc.

Int. Conf. on Data Engineering, 2003.
[46] F. Korn, S. Muthukrishnan, D. Srivastava. Reverse

Nearest Neighbor Aggregates over Data Streams. In
Proc. Int. Conf. on Very Large Data Bases, 2002, pp.
814–825.

[47] A. Lerner, D. Shasha. AQuery: Query Language
for Ordered Data, Optimization Techniques,
and Experiments. Technical Report, March
2003. csdocs.cs.nyu.edu/Dienst/Repository/

2.0/Body/ncstrl.nyu_cs%2fTR2003-836/pdf.
[48] L. Liu, C. Pu, W. Tang. Continual Queries for

Internet-Scale Event-Driven Information Delivery. In
IEEE Trans. Knowledge and Data Eng., 11(4): 610–
628, 1999.

[49] S. Madden, M. J. Franklin. Fjording the Stream:
An Architecture for Queries Over Streaming Sensor
Data. In Proc. Int. Conf. on Data Engineering, 2002,
pp. 555–566.

[50] S. Madden, M. J. Franklin, J. M. Hellerstein, W.
Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. In Proc. Symp. on Operating Sys-

tems Design and Implementation, 2002.
[51] S. Madden, M. J. Franklin, J. M. Hellerstein, W.

Hong. The Design of an Acquisitional Query Proces-
sor For Sensor Networks. To appear in Proc. ACM

Int. Conf. on Management of Data, June 2003.
[52] S. Madden, M. Shah, J. Hellerstein, V. Raman.

Continuously Adaptive Continuous Queries Over
Streams. In Proc. ACM Int. Conf. on Management

of Data, 2002, pp. 49–60.
[53] S. Madden, R. Szewczyk, M. J. Franklin, D. Culler.

Supporting Aggregate Queries Over Ad-Hoc Wire-
less Sensor Networks. In Proc. IEEE Workshop on

Mobile Computing Systems and Applications, 2002,
pp. 49–58.

[54] G. S. Manku, R. Motwani. Approximate Frequency
Counts over Data Streams. In Proc. Int. Conf. on

Very Large Data Bases, 2002, pp. 346–357.
[55] G.S. Manku, S. Rajagopalan, B.G. Lindsay. Ran-

dom Sampling Techniques for Space Efficient Online
Computation of Order Statistics of Large Datasets.
In Proc. ACM Int. Conf. on Management of Data,
1999, pp. 251–262.

[56] R. Motwani, J. Widom, A. Arasu, B. Babcock, S.
Babu, M. Datar, G. Manku, C. Olston, J. Rosen-
stein, R. Varma. Query Processing, Approximation,

and Resource Management in a Data Stream Man-
agement System. In Proc. Conf. on Innovative Data

Syst. Res, 2003, pp. 245–256.

[57] C. Olston, J. Jiang, J. Widom. Adaptive Filters for
Continuous Queries over Distributed Data Streams.
To appear in Proc. ACM Int. Conf. on Management

of Data, June 2003.

[58] V. Raman, A. Deshpande, J. Hellerstein. Using State
Modules for Adaptive Query Processing. To appear
in Proc. Int. Conf. on Data Engineering, 2003.

[59] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran,
M. J. Franklin. Flux: An Adaptive Partitioning Op-
erator for Continuous Query Systems. To appear in
Proc. Int. Conf. on Data Engineering, 2003.

[60] Stream Query Repository,
www-db.stanford.edu/stream/sqr.

[61] M. Sullivan, A. Heybey. Tribeca: A System for Man-
aging Large Databases of Network Traffic. In Proc.

USENIX Annual Technical Conf. , 1998.

[62] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cher-
niack, M. Stonebraker. Load Shedding in
a Data Stream Manager. Technical Report,
Feb. 2003. www.cs.brown.edu/~tatbul/papers

tatbul_tr.pdf.

[63] Traderbot, www.traderbot.com.

[64] P. Tucker, D. Maier, T. Sheard, L. Fegaras.
Enhancing relational operators for querying over
punctuated data streams. 2002. www.cse.ogi.edu/

dot/niagara/pstream/punctuating.pdf.

[65] P. Tucker, T. Tufte, V. Papadimos, D.
Maier. NEXMark—a Benchmark for Query-
ing Data Streams. 2002. www.cse.ogi.edu/

dot/niagara/pstream/nexmark.pdf.

[66] T. Urhan, M. J. Franklin. XJoin: A Reactively-
Scheduled Pipelined Join Operator. In IEEE Data

Engineering Bulletin, 23(2):27–33, June 2000.

[67] S. Viglas and J. Naughton. Rate-Based Query Opti-
mization for Streaming Information Sources. In Proc.

ACM Int. Conf. on Management of Data, 2002, pp.
37–48.

[68] H. Wang, C. Zaniolo. ATLaS: A Native Extension
of SQL for Data Mining and Stream Computations.
citeseer.nj.nec.com/551711.html.

[69] A. Wilschut, P. Apers. Dataflow query execution in
a parallel main-memory environment. In Proc. Int.

Conf. Parallel and Distributed Information Systems,
1991, pp. 68–77.

[70] Y. Yao and J. Gehrke. Query Processing for Sensor
Networks. In Proc. Conf. on Innovative Data Syst.

Res, 2003, pp. 233–244.

[71] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Ja-
gadish, C. Faloutsos, A. Biliris. On-Line Data Mining
for Co-Evolving Time Sequences. In Proc. Int. Conf.

on Data Engineering, 2000, pp. 13–22.

[72] Y. Zhu, D. Shasha. StatStream: Statistical Monitor-
ing of Thousands of Data Streams in Real Time. In
Proc. Int. Conf. on Very Large Data Bases, 2002, pp.
358–369.

14 SIGMOD Record, Vol. 32, No. 2, June 2003

