
Analysis of existing databases at the logical level:

the DBA companion project

Fabien De Marchi1, Stéphane Lopes2, Jean-Marc Petit1, Farouk Toumani1

1 Laboratoire LIMOS, CNRS UMR 6158
Université Blaise Pascal - Clermont-Ferrand II

24, avenue des Landais, 63 177 Aubière cedex, France

2 Laboratoire PRISM, CNRS FRE 2510
45, avenue des Etats-Unis, 78035 Versailles Cedex, France

January 15, 2003

Abstract

Whereas physical database tuning has received a lot
of attention over the last decade, logical database
tuning seems to be under-studied. We have devel-
oped a project called DBA Companion devoted to the
understanding of logical database constraints from
which logical database tuning can be achieved.
In this setting, two main data mining issues need
to be addressed: the �rst one is the design of e�-
cient algorithms for functional dependencies and in-
clusion dependencies inference and the second one
is about the interestingness of the discovered knowl-
edge. In this paper, we point out some relationships
between database analysis and data mining. In this
setting, we sketch the underlying themes of our ap-
proach. Some database applications that could bene-
�t from our project are also described, including log-
ical database tuning.

1 Introduction and motivations

Today's Relational DataBase Management Systems
(rdbms) require DataBase Administrators (dba) to
tune more and more parameters for an optimal use
of their databases. Due to the di�culty of such a

task and since a large number of companies can-
not justify a full-time dba presence, simplifying ad-
ministration of rdbms is becoming a new challenge
for the database community: The idea is to have
databases adjusting themselves to the characteristics
of their applications [2]. For example, in the con-
text of the AutoAdmin project [22], physical database
tuning is investigated to improve performances of the
database, e.g. index de�nitions or automatic statistic
gathering from SQL workloads.

In the same spirit, existing logical database con-
straints should be fully understood. For exam-
ple, providing the dba with functional dependencies
(FDs) and inclusion dependencies (INDs) holding in
her database is particularly critical not only for im-
proving data consistency but also for ensuring appli-
cation performances.

Understanding existing databases is a necessary
step when the database has to evolve for instance
to better match user's requirements or when hard-
ware/software evolution has to be performed. Many
database applications, such as database reverse engi-
neering, data interoperability or semantic query opti-
mization to mention a few, assume the availability of
data semantics, mainly conveyed by FDs and INDs
over existing databases. However, there is no guar-



antee at all such kind of knowledge is a priori known.
We have developed a project called DBA Compan-

ion devoted to the understanding of logical database
constraints from which logical database tuning can
be achieved [16, 15, 4]. A prototype has been devel-
oped [14]: its objective is to be able to connect any
database (independently of the underlying DBMS) in
order to give some insights to DBA/analyst such as:

• the FDs and INDs satis�ed in her database,

• small examples of her database, thanks to Infor-
mative Armstrong Databases. The same bene-
�ts when the design by example were introduced
[23, 17] are also expected in this slightly di�er-
ent context (database maintenance vs database
design).

Paper organization Section 2 introduces the
main underlying problems to achieve logical database
tuning such as functional and inclusion dependency
discovery. Some applications which could bene�t
from these dependencies are sketched in Section 3.
We conclude in Section 4.

2 Data mining issues

Since data semantics is mainly conveyed by FDs and
INDs in relational databases, it gives rise to two data
mining problems. In this setting, two main issues
need to be addressed: the former is about the design
of e�cient algorithms for FDs and INDs inference
and the latter is about the interestingness of the dis-
covered knowledge.

Example 1 Let us consider a database describing or-
ders of products of a company. A running example
is given in table 1 and will be reused throughout the
paper.

2.1 FD inference

The problem of discovering FDs is stated as follows:
�given a relation r, �nd a small cover of the FDs
that hold in r�. Discovering functional dependencies
satis�ed by a database has been addressed by various
approaches, among which we quote [18, 11, 15, 20].

Table 1: A running example

Product

pid name price
1 Chai $ 18.00
2 Tofu $ 18.00
3 Paté $ 12.30
4 Paté $ 50.00

Order
oid date shipVia pid qty

10509 11-10-1998 Federal Shipping 1 2
10509 11-10-1998 Federal Shipping 2 1
10510 1-5-2000 United Package 3 1
10511 12-12-1998 Speedy Express 2 2

In [15], a general framework has been proposed
based upon the concept of agree set [1, 18, 7]. Given
a relation, an agree set is an attribute set having the
same values in at least a couple of tuples in this re-
lation. Informally, such a set conveys information
about FDs not satis�ed by a couple of tuples. More
precicely, it is a closed set with respect to FD clo-
sure. From agree sets, maximal sets (also called meet-
irreducible sets) can be easily derived and then, many
problems related to FD inference can be achieved
without accessing the database anymore. Examples
of related problems are key discovery, approximate
FD inference, normal form tests and Armstrong re-
lation generation from FDs that hold in the relation
being analyzed [9].
The most important point of this framework is that

a relation is queried only once, i.e. when agree sets
are computed.
A data mining approach and a database approach

using SQL have been proposed to compute agree sets
from a relation [15]. Both approaches performed
equally well but the latter is fully integrated in the
DBMS, which is by far more realistic in our context
(no pre-treatment is necessary).

Example 2 A cover of FDs satis�ed in Product

and Order are: { Product:{pid} → {name,price},

Product:{name,price} → {pid}, Order: {oid} →
{date,shipVia}, Order: {date} → {oid}, Order:

{shipVia} → {oid} , Order: {pid,qty} → {oid} ,

Order: {oid,pid} → {qty} , Order: {oid,qty} →
{pid} }



2.2 IND inference

The problem of inclusion dependency inference in
relational databases can be formulated as follows:
�given a database d, �nd a small cover of INDs that
hold in d�. As far as we know, the discovery of
inclusion dependencies has raised little interest in
Database and KDD research communities [12, 16]).
In our project, a levelwise algorithm called Mind

has been devised to discover a cover of INDs satis-
�ed by a database [4]. It extends the well known
AprioriGen function for association rules discovery
to generate new candidate INDs of size i + 1 from
satis�ed INDs of size i. It is worth noting that in
[4] a new proposition for unary IND inference has
been made from which IND discovery becomes more
realistic in practical cases.

Example 3 INDs satis�ed in the database given in Ta-
ble 1 are : { Order[pid] ⊆ Product[pid], Order[qty]

⊆ Product[pid], Order[qty] ⊆ Order[pid] }

2.3 Interestingness of the discovered

knowledge

Once FDs and INDs satis�ed by a given database
are discovered, they have not the "same weight", i.e.
only a subset of them are worth to take into account
when for instance a logical database tuning process
has to be carried out. Eliciting such subsets can be
guided by DBA' expertise or SQL workloads.
We propose two approaches to deal with this im-

portant task in a KDD process: the former is based
on the intuition that attributes implied in so called
logical navigation, convey more information than
other attributes and the latter is based on the capa-
bility of Armstrong relations to represent in a con-
densed form all the discovered knowledge through
small examples.

2.3.1 Heuristics based on logical navigation

The logical navigation can be de�ned as a set of
(duplicated) attributes on which join statements are
performed in application programs. The basic claim
is that duplicated attributes vehicle more semantics
than other ones. These attributes can be identi�ed

from join statements of SQL workloads representa-
tive of database activity. Such SQL workloads are
easily gathered in recent rdbms.

Interestingness of INDs We can de�ne the no-
tion of interestingness for INDs as being those INDs
which concern duplicated attributes over relation
schemas. In [16], we exploit the logical navigation
as a guess to automatically �nd out only interesting
INDs, being understood that some of them can be
missed. Thus, it can be seen as a pre-treatment of
a data mining algorithm to decrease the number of
candidate attributes.

Example 4 Continuing our example, it seems quiet
reasonable to assume that in a representative work-
load of the database activity, a join between
Order[pid] ./ Product[pid] does exist. There-
fore, from example 3 only one IND is considered as in-
teresting: Order[pid] ⊆ Product[pid]. It is worth
noting that other INDs, such as e.g. Order[qty] ⊆
Product[pid], do not re�ect integrity constraints,
rather accidental dependencies.

Interestingness of FDs Basically, the idea which
has been developed so far for INDs can be reused for
FDs: the idea is to discard FDs whose at least one
attribute of the left-hand side is not a duplicated at-
tribute, i.e. does not belong to the logical navigation
of the database1.

Example 5 In addition to the previous example,
assume Order.oid is also a duplicated attribute
(with another schema not listed here). Applying
the previous heuristic, it remains only three de-
pendencies from the example 2: { Product:{pid}

→ {name,price}, Order: {oid} → {date,shipVia},

Order: {oid,pid} → {qty} }

Nevertheless, we cannot argue that the logical nav-
igation always give enough information to select rel-
evant FDs: this is all the more true in case of 'full'
denormalization. Indeed, no join could be possible
anymore, which could be the case for Order.oid in
our example.
To cope with such an intrinsic limitation, we have

de�ned a variant of Armstrong databases, so called

1In [21], a similar idea was proposed in an informal way.



Informative Armstrong Databases, as an e�ective al-
ternative representation of the extracted knowledge.

2.3.2 Armstrong relations/databases

Armstrong relations, introduced in [8], are closely re-
lated to FDs since they exactly satisfy a set of FDs.
Given a relation as input, Armstrong relations can

be computed with respect to the FDs satis�ed in that
relation. In [5], we have introduced the notion of
informative Armstrong relation which is both 1) an
Armstrong relation with respect to the FDs satis�ed
in the input relation and 2) a subset of that relation.
Experiments show its interest to sample existing re-
lations (up to 1000 times smaller). Moreover their
tuples come from the "real world" and thus convey
more semantics than other existing proposals.
Inclusion dependencies can also be safely inte-

grated into this framework: they lead to the de�-
nition of informative Armstrong databases [6].

3 Applications

We present below three examples of database appli-
cations which can bene�t from a clear understanding
of data semantics in existing databases.

3.1 Data integration

Many organizations are using databases implemented
over a decade ago and are actually faced with di�-
culties to modernize or to replace these databases to
match the evolution of both the technology and the
requirements.
In such applications, it is essential to recover data

semantics in order to develop new databases or to
change underlying data models. As an example,
consider the problem of data/schema integration in
which the Clio system is developed [19]. It is de-
voted to the transformation and the integration of
heterogeneous data (relational data and XML Data).
As far as relational databases are concerned, authors
mention the necessity of the discovery of keys and
referential constraints in existing databases.

3.2 Semantic query optimization

Semantic query optimization takes advantage of se-
mantic information stored in databases to improve
the e�ciency of query evaluation [10, 3].
As an example, consider a semantic query opti-

mization technique called query folding. It consists
in computing query answers using a given set of re-
sources (materialized views, cached results of previ-
ous queries or queries answerable by other queries).
In [10], the author proposes to use INDs to �nd fold-
ing of queries that would otherwise be overlooked.

3.3 Logical database tuning

We expect the greatest impact of our work for this ap-
plication. We sketch the usefulness of the discovered
dependencies to assist a dba for tuning an existing
database at the logical level [14].
The key tasks of such an activity should be:

• logical constraints de�nition: for instance, de�-
nition of keys, foreign keys and triggers,

• database restructuring : for instance, normalizing
a relation schema with the help of small sam-
ples (informative Armstrong relations) of the re-
lation.

Logical DB tuning from FDs A key is a special
case of a FD. Keys turn out to be one of the most
important integrity constraint in practice. Therefore,
a DBA has the opportunity to enforce keys over a
relation schema of an existing database.

Example 6 For instance, attributes pid in Product is
a key and should be enforced (if not already done).

Logical DB tuning from INDs A foreign key
is a special case of IND, since it represents the left-
hand side of an IND whose right-hand side is a key.
Within our framework, foreign keys can be derived
from both INDs and keys of the relation schema of
the right hand side.
As for keys, a DBA has the opportunity to enforce

foreign keys over an existing database.

Example 7 For instance, attribute pid in Order is a
foreign key and should be enforced.



Table 2: A restructurated database

Product
pid name price
1 Chai $ 18.00
2 Tofu $ 18.00
3 Paté $ 12.30
4 Paté $ 50.00

OrderDetail
pid oid qty
1 10509 2
2 10509 1
2 10511 1
3 10510 2

Order
oid date shipVia

10509 11-10-1998 Federal Shipping
10510 1-5-2000 United Package
10511 12-12-1998 Speedy Express

Database restructuring From interesting FDs
and INDs, classical algorithms (e.g. synthesis algo-
rithm) could be applied to normalize existing relation
schemas (see [13] for non interaction conditions be-
tween FDs and INDs).

When a restructuration has to be performed on an
operational database, one need to migrate the data
which is an easy task once the target de�ned.

Example 8 From F = { Product:{pid} → {name,

price}, Order: {oid} → {date, shipVia},
Order: {oid,pid} → {qty} } and I =
{Order[pid] ⊆ Product[pid] }, we can nor-
malize relation schemas and then migrate the data.
We would get the database given in Table 2 (we omit
the constraints).

To take into account application programs access-
ing the database schema through existing relations
and views, there is no easy solution. One approach is
to de�ne a set of views over the new database schema
to "simulate" the old database schema. Nevertheless,
updating relational views is a di�cult problem which
is weakly supported by major rdbms.

4 Conclusion

Most of the time, applications of data mining con-
cern decision-making for humans. In this paper, we
show that systems could also take advantage of data
mining. More precisely, we have shown that logical
database tuning, e.g keys and foreign keys enforce-
ment, is a new application of data mining. Indeed, it
can be thought as a decision that an expert (here the
database system) have to make to improve her busi-
ness (here data coherence enforcement) from knowl-
edge hidden in her data.
Since data semantics of existing databases is

mainly conveyed by FDs and INDs, two data min-
ing algorithms need to be dealt with: FD inference
and IND inference. We have contributed to each of
these inference problems and we have presented in
this paper how much this knowledge can be relevant
and useful for database applications.

References

[1] C. Beeri, M. Dowd, R. Fagin, and R. Statman.
On the structure of Armstrong relations for func-
tional dependencies. JACM, 31(1):30�46, 1984.

[2] P.A. Bernstein and al. The Asilomar report
on database research. ACM Sigmod Record,
27(4):74�80, 1998.

[3] Q. Cheng, J. Gryz, F. Koo, T.Y.C. Leung,
L. Liu, X. Qian, and B. Schiefer. Implementa-
tion of two semantic query optimization tech-
niques in DB2 universal database. In Proc.
of the 25th VLDB, pages 687�698, Edinburgh,
Scotland, UK, 1999. Morgan Kaufmann.

[4] F. De Marchi, S. Lopes, and J.-M. Petit. E�-
cient algorithms for mining inclusion dependen-
cies. In Proc. of the 7thEDBT, volume 2287 of
LNCS, pages 464�476, Prague, Czech Republic,
2002. Springer.

[5] F. De Marchi, S. Lopes, and J-M. Petit. Sam-
ples for understanding data-semantics in rela-
tions. In International Symposium on Method-
ologies for Intelligent Systems (ISMIS'02), vol-



ume 2366 of LNAI, pages 565�573, Lyon, France,
2002. Springer-Verlag.

[6] F. De Marchi and J-M. Petit. Construction de
petites bases de données d'Armstrong informa-
tives. Revue d'intelligence arti�cielle RSTI-RIA
(from EGC'03), 17:31�42, Jan. 2003.

[7] J. Demetrovics and V.D. Thi. Some remarks
on generating Armstrong and inferring func-
tional dependencies relation. Acta Cybernetica,
12(2):167�180, 1995.

[8] Ronald Fagin. Armstrong databases. Technical
Report 5, IBM Research Laboratory, 1982.

[9] G. Gottlob and L. Libkin. Investigations on
Armstrong relations, dependency inference, and
excluded functional dependencies. Acta Cyber-
netica, 9(4):385�402, 1990.

[10] J. Gryz. Query Folding with Inclusion Depen-
dencies. In Proc. of the 14th IEEE ICDE, pages
126�133, Orlando, Florida, Feb. 1998. IEEE CS.

[11] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. Tane: An e�cient algorithm for
discovering functional and approximate depen-
dencies. The Computer Journal, 42(3):100�111,
1999.

[12] M. Kantola, H. Mannila, K-J. Räihä, and H. Si-
irtola. Discovering functional and inclusion de-
pendencies in relational databases. Int. Journal
of Intelligent Systems, 7:591�607, 1992.

[13] M. Levene and G. Loizou. Guaranteeing no in-
teraction between functional dependencies and
tree-like inclusion dependencies. TCS, 254(1-
2):683�690, 2001.

[14] S. Lopes, F. De Marchi, and J-M. Petit. DBA
companion : un outil pour l'analyse de bases de
données (demo session). In BDA'2002 (French
database conference), pages 523�528, 2002.

[15] S. Lopes, J-M. Petit, and L. Lakhal. Func-
tional and approximate dependencies mining:
Databases and FCA point of view. Special is-
sue of JETAI, 14(2/3):93�114, 2002.

[16] S. Lopes, J-M. Petit, and F. Toumani. Discover-
ing interesting inclusion dependencies: Applica-
tion to logical database tuning. IS, 17(1):1�19,
2002.

[17] H. Mannila and K-J. Räihä. Design by example:
An application of Armstrong relations. JCSS,
33(2):126�141, 1986.

[18] H. Mannila and K-J. Räihä. Algorithms for in-
ferring functional dependencies from relations.
DKE, 12(1):83�99, 1994.

[19] R.J. Miller, M.A. Hernández, L.M. Haas, L-L
Yan, C.T.H. Ho, R. Fagin, and Lucian Popa.
The Clio project: Managing heterogeneity.
ACM Sigmod Record, 30(1):78�83, Mar. 2001.

[20] N. Novelli and R. Cicchetti. Functional and
embedded dependency inference: a data mining
point of view. IS, 26(7):477�506, 2001.

[21] J-M. Petit, F. Toumani, J-F. Boulicaut, and
J. Kouloumdjian. Towards the reverse engineer-
ing of denormalized relational databases. In
Proc. of the 12th IEEE ICDE, New Orleans,
Louisiana, pages 218�227, 1996.

[22] AutoAdmin project. Microsoft research,
http://www.research.microsoft.com/dmx/au-

toadmin.

[23] A. M. Silva and M. A. Melkano�. A method for
helping discover the dependencies of a relation.
In Hervé Gallaire, Jean-Marie Nicolas, and Jack
Minker, editors, Advances in Data Base Theory,
pages 115�133, Toulouse, France, 1979.


