A Graphical Query Language for Mobile Information Systems*

Ya-Hui Chang
Department of Computer Science
National Taiwan Ocean University
No. 2 Peining Rd., Keelung, 202, Taiwan
email address: yahui@Qcs.ntou.edu.tw

Abstract

The advance of the mobile computing environment
allows data to be accessed in any place at any time,
but currently only simple and ad-hoc queries are sup-
ported. People are eager for mobile information sys-
tems with more functionality and powerful querying
facilities. In this paper, a graphical query language
called MoSQL is proposed to be the basis of general
mobile information systems. It provides a uniform
way for users to access alphanumerical data and to
query current or future location information, based
on an icon-based interface. The interface is particu-
larly suitable for the mobile environment, since it is
easily operated by clicking or dragging the mouse. An
example and the underlying theoretical framework
will be presented in this paper to demonstrate the
functionality of MoSQL.

1 Introduction

Mobile computing has been one of the most fast grow-
ing areas recently. Mobile phones along with other
applications have become necessities to most people.
They not only provide the basic function for oral com-
munication, but also allow data to be accessed in any
place at any time. For example, mobile users could
retrieve information such as the locations of nearest
restaurants via WAP. In such kind of applications,
selected data items are pre-classified and listed in a
navigational hierarchy. Users might encounter diffi-
culty to retrieve the desired information, and only
plain text data are presented. GIS systems equipped
with GPS and graphical interfaces could show the in-
stant location information on the map. However, still
only simple and ad-hoc queries are supported.

An advanced mobile information system should
provide more functionality and be able to process

*This work was partially supported by the Republic of
China National Science Council under Contract No. NSC 88-
2213-E-019-005.

general and complicated queries. Consider the po-
lice officers, who change locations frequently to pa-
trol their magistracy. When catching a suspect, a
police officer might issue location-unrelated queries
to retrieve the physical characteristics, such as the
height and weight, of the suspect. He may also need
help to catch the suspect and pose the query: ’Tell
me where the policeman nearest to me is now.’ This
kind of queries, called location-related queries, either
directly retrieve location information, or impose con-
straints on location data. He might want to further
estimate the future location of a colleague in ten min-
utes. Therefore, a general mobile information system
should possess the following characteristics:

e allowing past, current, and future location infor-
mation to be queried

e providing an integrated approach for users to
query both location and alphanumerical types
of data

e presenting a user-friendly interface

This paper discusses the issues for constructing ad-
vanced mobile information systems which could meet
the above requirement. The main contribution of this
paper, is to propose a graphical query language called
MoSQL, as a basis for general mobile information
systems. This language has an icon-based interface.
That is, the same class of data represented in the
database system corresponds to the same icon. All
the ordinary, spatial, and temporal properties are as-
sociated with that icon, and can be similarly invoked
via it. Therefore, MoSQL provides a uniform way
for users to access alphanumerical data and to query
current or future location information. The interface
is also particularly suitable in a mobile environment,
since it is easily operated mainly by clicking or drag-
ging the mouse, requiring little keyboard strokes. The
theoretical framework underlying the interface will be
discussed to demonstrate the complete functionality
of MoSQL.

location—object

mobile-unit building
vehicle police hospital school

Figure 1: Classification of location objects

The remaining of this paper is organized as follows:
Section 2 defines the object model for data in the mo-
bile information system. The MoSQL query language
is then presented, with the graphical user interface in
Section 3, and the theoretical framework in Section 4.
Finally, related research results are compared in Sec-
tion 5 and conclusions are given in Section 6.

2 The Object Model

In a mobile information system, there will be
location-unrelated data and location-related data.
We adopt an object model to represent these infor-
mation. Particularly, objects with location data are
named location objects. They can be further classi-
fied into mobile units and buildings. Mobile units,
or called moving objects, refer to those objects which
change location constantly, such as vehicles or the
police. Their location data should be presented with
time stamps to identify when the particular location
data is valid. On the other hand, the locations of
buildings, or called stationary objects, are presumed
permanent, so temporal data are not required. This
classification is depicted as a hierarchy in Figure 1.

When we build an application in the mobile com-
puting environment, all the relevant information
might be stored in different places. Take the police
information system for examples. The location data
are managed by the mobile service provider. The du-
ties performed by each policeman will be managed by
the police headquarter. Therefore, each real-world
object usually possesses two identities. We will re-
fer a policeman as a location object (or specifically a
moving object) in the mobile environment, but as an
application object in the application context.

Several possible constraints exist for the objects
under such environment. The heterogeneous con-
straint refers to the semantic conflicts or other kinds
of heterogeneity for the data presented in multi-
databases with different formats. There are also the
spatial constraint, temporal constraint and normal
constraint. The first two constraints restrict the po-

sitions of location objects at a certain time. The last
one refers to restriction on attributes of the applica-
tion object, as supported in the traditional database
system.

There is a distinction among location objects in
a particular query. If their location data retrieved
from databases are used to form spatial constraints,
these objects will be called reference objects. For
the objects whose location data are to be displayed
to the users, they will be called the target objects.
More generally, target objects refer to those objects
whose properties, either location-related, or location-
unrelated, are to be retrieved.

3 The User Interface

The graphical user interface as seen in Figure 2
provides a uniform way for users to pose location-
unrelated queries and location-related queries. To
cope with the portable characteristic of mobile envi-
ronments, the interface could be fully operated by the
mouse, without needing the keyboard. Three basic
actions for using the mouse include clicking using the
left button (left click), clicking using the right button
(right click), and dragging by continuously pressing
the left button of the mouse (dragging). Their func-
tions might differ under different contexts, as will be
explained later.

The interface is mainly divided into three portions.
Data stored in the system are shown on the left side.
The interface is icon-based, where the objects in the
same class correspond to the same icon. Their prop-
erties are directly associated with that icon and could
be retrieved by clicking it. The icons are classified
into three groups. Groups mobile unit and build-
ing correspond to the second level of Figure 1. The
last group information is used to collect all location-
unrelated data. If we left click on the tab labeled Mo-
bile Unit, those data belong to this group, e.g., the
police and the vehicle, will be shown on the space be-
low, which correspond to the leaves of the hierarchy
in Figure 1. A special icon Me corresponds to the
user who is posing the query.

The lower left of the interface has three small input
windows, called Referencel, Reference2 and Target.
Currently we support at most two reference objects.
They are used along with the spatial operators to
form spatial constraints. The data belong to the mo-
bile unit group or the building group, could be input
to these windows, by dragging the appropriate icon
into the windows. If we left click the input icon, the
constraint window will pop up for us to specify nor-
mal constraints and temporal constraints. For target
objects, we could also right click the icon to invoke

i, Mo3QL

H-Coorx ¥-Coox

Mobils Unit | Briding | Information | S Formulats |
=TT e
= =TT it
. | Sy e
w ::ﬁ] i WMo Spatial Constraint |
Me Police | I
29 T“- L% T =l R;f:;ce
Z=F AR :
Yehicle s, | 1 Reference
- = \mapw.E S Washi Near | Within
b i [- m\v -
&3 cQ | | I BHP' | & Reference
lam TOM 'rr:"%ihljpngétﬁﬁ Between. .. And |
WWEST POtOrm Mk
il afte \,g%@.
| | | Y Eird ! 1 ‘%
i, % i
q |
Region Name [Ro01:DC [MapCls | Eeset |
Figure 2: The graphical user interface
another window for specifying the output attributes. Left click the button labeled Between ... And,
The middle of the interface is a geographic map, and the three input windows will be enabled.
which could be used to pose a spatial constraint, e.g., _
by drawing a circle, and is also used to show the po- 2. Identifying the reference objects:
sitions of location objects. The spatial operators are
shown on the right of the interface, which are classi- e Left click the tab labeled Mobile Unit. Drag
fied based on the number of reference objects needed, the Me icon into the Referencel window.
as will be explained in Section 4. When the button e Left click the tab labeled Building. Drag
entitled “No Spatial Constraint” is selected, among the Hospital icon into the Reference? win-
the three input windows, only the window entitled dow.

“Target” is enabled. It is designed for users to pose
location-unrelated queries.

A prototype is built to simulate a mobile police in-
formation system. It is a client-server system based
on a fixed TCP/IP network. The data are repre-
sented in a relational database system. The graphi-
cal user interface was first built by Microsoft Visual
Basic, and then ported to a web system. Therefore,

e Left click the window Reference2 and the
constraint window will pop up. Restrict the
attribute “Name” to be “State Hospital”.

3. Identifying the target object and specifying the
temporal constraint:

the users could operate the system through browsers. ® Left click the tab labeled Mobile Unit. Drag

We illustrate the usage of the interface by an ex- the Police icon into the Target window.
ample. Suppose the user poses the following query: e Left click the Target window to invoke the
Please find all the police who are currently located be- constraint window. Specify the temporal
tween me and the building named “State Hospital”. constrain to be Now.

The detailed steps using this graphical user interface

are listed as follows: e Right click the window Target. On the

popped up window, select all the attributes
1. Identifying the spatial operator: for output.

4. Executing the query:

Left click the Run icon. The qualified police will
be shown on the map as red dots based on their
current locations.

5. Retrieving location-unrelated data:

Left click a particular red dot, and we could see
the output attribute values.

6. Retrieving location-related information:

Right click a particular red dot, and we could
see its estimated speed. We could further give a
period to estimate its future location.

4 The Theoretical Framework

The query posed on the interface in Figure 2 could
be transformed into an SQL-like query. We name it
MoSQL since it is an extension of the standard SQL
language, and is designed to cope with the special
requirement for a mobile information system. The
following subsections present this query language in
detail.

4.1 Domain Constructors

Data in MoSQL could be defined with the alphanu-
meric data types, as in the traditional relational
model. MoSQL also supports two spatial domains,
point and region, and one temporal domain, which is
timestamp. The domain timestamp is used to repre-
sent the specific time instants when something occurs,
i.e., tuples are true at those particular time instants.
The point domain is used to precisely represent an ob-
ject’s location by its coordinates. An element in the
region domain is a geographical area. Currently we
only consider two basic forms, i.e., circle and window
(rectangle). Constant constructor functions used to
create instances of the spatial domains via the map,
are described as follows:

e the point constructor:

The point constructor takes a pair of values (z,y)
and creates a point with the X-axis coordinate
at ¢ and Y-axis coordinate at y. It corresponds
to the action left clicking on the map.

e region constructors:

Two region constructors are supported. The cir-
cle constructor needs two points as arguments.
The first point is the center of the circle. The
user needs to left click on the map to determine
the second point. The distance between the two
points will be the radius of the circle.

The window constructor corresponds to the ac-
tion dragging on the map. Suppose a line is
stretched from the point (z;,y1) to the point
(z2,y2)- It will form the diagonal of a rectan-
gle, and the four endpoints of the rectangle will
be (z1,y1), (%2,92), (z1,92) and (22,y1).

4.2 Operators

The operators discussed in this subsection are used
to formulate spatial constraints. They are classified
based on the numbers of reference objects which they
need. The location data of the reference objects are
retrieved from the database system.

e without reference objects:

The operator within could form a predicate with
the form target within window, where target rep-
resents the target object, and window represents
a region directly specified by the user using the
window constructor. This predicate will restrict
the target objects to be located within the par-
ticular window.

e with one reference object:

The near operator forms the predicate target
near reference. All the objects near to the lo-
cation of the reference object will be retrieved.
The meaning of nearness is system-defined.

The within operator is overloaded and could form
another predicate like target within circle. The
circle is created using the circle constructor, and
is centered at the location of the reference object.
If the target object is located within the partic-
ular circle, this predicate will return true. This
operator is more flexible than the near operator
in the sense that we allow users to determine the
size of the region.

e with two reference objects:

The operator between - - - and needs two reference
objects, and the predicate is like target between
referencel and reference2. Suppose referencel is
located at (z1,y1) and reference2 is located at
(z2,y2). This predicate will return true, if the
location of the target object, (z3,y3), satisfies
the following inequation:

Y223 + T1Y3 + Y1T2 — Y1T3 — T2Y3 — T1Y2
V(@2 —21)% + (y2 — 11)?

<d

To explain, we first use the two points (x1,y1)
and (z2,y2) to form a straight line. Then we
calculate the distance between (z3,ys3) and this

line, which forms the left side of the inequation.
If the value is less than d, which is a system-
defined value, we will determine that the point
(z3,y3) is located between (z1,y1) and (x2,y2)-

4.3 Functions

Several functions are defined in the MoSQL query
language. The values of the functions could be di-
rectly displayed to the users, or could be used to form
a predicate. They are classified as follows:

e spatial functions:

The s-distance function calculates the spatial dis-
tance between two points.

e temporal functions:

The t-distance function returns a temporal dis-
tance between two instants from the timestamp
domain.

e mobile functions:

The function speed returns the speed of a moving
object. There are two ways to invoke this func-
tion. In the first method, the function is specified
as speed (s-distance, t-distance), where a value
representing a spatial distance is the first argu-
ment, and a value representing a temporal dis-
tance is the second argument. This function will
use these two values to calculate the speed. In
the second method, we could invoke this function
with a mobile unit as the argument. The system
will estimate the speed of this mobile unit based
on its most recent location data represented in
the system.

Given a mobile unit and a temporal distance, the
function location estimates the future location of
the mobile unit.

e heterogeneous functions:

The equal function takes two arguments, where
the first argument represents a mobile unit, and
the second argument represents an application
object. This function will return the value true,
if the two arguments correspond to the same ob-
ject in the real world; otherwise, it will return
the value false.

4.4 Syntax

As described in Section 2, a real-world object, like a
policeman, will be referred to as a location object in
the mobile environment, but as an application object
when discussing his duties. Therefore, the SELECT

clause of the MoSQL DML is designed to display the
properties of the two identities, including attribute
values or the values of functions as previously defined.
The syntax of the MoSQL DML is listed as follows:

< mosql > =
SELECT < property-of-application-object > |
< property-of-location-object >
FROM < relation-list >
[VALID < temporal-constraint >]
WHERE EQUAL (< location-object >,
< application-object >)
{ AND < normal-constraint > }
[AND < spatial-constraint >]

The WHERE clause of the MoSQL DML repre-
sents the conditions which need to be satisfied by the
tuples in the resulting relation. As discussed in Sec-
tion 2, there could be four types of constraints, and
three of them are specified in the WHERE clause.
The equal function relates a location object to an ap-
plication object, which belongs to heterogeneous con-
straints. An MoSQL query could have many normal
constraints on the identity of the application object,
but have at most one spatial constraint on the iden-
tity of the location object.

The other constraint, ¢.e., the temporal constraint,
is specified in the VALID clause. It will be applied
to those relations which define temporal attributes.
There are three ways to specify a VALID clause. The
first one is to impose constraints on instants. For
example, the clause VALID TIMESTAMP ’10:00am’
will only retrieve the tuple whose timestamp is ex-
actly ’10:00am’. The second one is to impose con-
straints on intervals by using the INTERVAL key-
word, such as INTERVAL ’5’ MINUTES. The third
one is to impose constraints on periods, such as
VALID PERIOD ’[10:00am - 10:05am]’.

5 Related Work

Some constructs of the MoSQL query language are
stemmed from the work in spatial databases [4], par-
ticularly PSQL [6]. The temporal constructs are
adopted from the TSQL2 language [9]. They are
modified in order to be more suitable in a mobile
environment,.

As to the modeling of the mobile unit, the tempo-
ral component is directly associated with the spatial
component in our system. Such information could
be obtained if the mobile service provider updates
the location data of mobile units with a timestamp
regularly. To reduce the cost of updating, the au-
thors in [8] represent the position of moving objects

as a function of time. The Future Temporal Logic
(FTL) is proposed to express future queries and con-
tinuous queries based on that model. In [10], the
authors propose an information cost model to deter-
mine when the location of a moving object in the
database should be updated. They also describe a
three-layer architecture as a platform for developing
motion database type of applications [11].

The issue of designing graphical user interfaces has
also attracted the attentions of researchers from dif-
ferent areas. Query extensions and corresponding vi-
sual representations have been proposed for spatial
applications [1]. The author in [3] specifically advo-
cates that a graphical user interface for spatial query-
ing may have three sub-windows: (1) a text window
for textual representation of a collection of objects;
(2) a graphics window for graphical representation of
a collection of objects; (3) a text window for enter-
ing queries and display of system messages. On the
other hand, for the mobile environment, the authors
in [2] advocate a pen-based graphical database lan-
guage. The interface is easy to use, avoids keyboard
use, and is suited to small screens and small memory
size of mobile machines. Some researchers propose
an iconic query language for the mobile environment,
which involves no path specification in composing a
query [5]. These characteristics could be found in our
graphical user interface.

6 Conclusion

We have presented a graphical query language called
MoSQL in this paper. This language provides a uni-
form way for users to access all kinds of information
possibly presented in a mobile environment, includ-
ing alphanumerical and location data. The graphical
user interface is also designed to cope with the char-
acteristic of the mobile environment, so that it could
be easily operated by the mouse only. This language
has been successfully used as a basis to build a mobile
police information prototype.

The current work could be extended in several di-
rections. First, we hope to extend the modeling and
expressive power of the MoSQL query language to al-
low more complex queries being posed, especially in
the mobility aspect. We also plan to improve the
query processing methods by incorporating special
data structures. In [7], the authors propose an R*-
tree based indexing technique to support the efficient
querying of the current and projected future positions
of moving objects. These research results are worth
further investigating.

Acknowledgment:

The author is thankful to Dr. Wang-Chien Lee for
the constructive suggestions to improve the paper.

References

[1] A. Aiken, J. Chen, M. Stonebraker, and
A. Woodruff. Tioga-2: A direct manipulation
database visualization environment. In Proceed-
ings of the 12th International Conference on
Data Engineering, pages 208-217, 1996.

[2] R. Alonso, E. Haber, and H. Korth. A database
interface for mobile computers. In IEEE Globe-
com 92 Workshop: Networking of Personal
Communications Applications, 1992.

[3] M. Egenhofer. Spatial sql: A query and presen-
tation language. IEEE Transactions on Knowl-
edge and Data Engineering, 6:86-95, 1994.

[4] R.H. Guting. An introduction to spatial
database systems. VLDB Journal, 3(4):357-399,
1994.

[5] A. Massari, S. Weissman, and P. K. Chrysan-
this. Supporting mobile database access through
query by icons. Distributed and Parallel

Databases Journal (Special Issue on Databases
and Mobility), 4(3):249-270, 1996.

[6] N. Roussopoulos, C. Faloutsos, and T. Sel-
lis. An efficient pictorial database system for
psql. IEEE Transactions on Software Engineer-
ing, 14(5):639-650, 1988.

[7] S Saltenis, CS Jensen, ST Leutenegger, and
MA Lopez. Indexing the positions of contin-
uously moving objects. SIGMOD RECORD,
29(2):331-342, 2000.

A. Prasad Sistla, O. Wolfson, S. Chamberlain,
and S. Dao. Modeling and querying moving ob-
jects. In Proceedings of the IEEE International
Conference on Data Engineering, 1997.

Richard T. Snodgrass, editor. The TSQL2 Tem-
poral Query Language. Kluwer Academic Pub-
lishers, 1995.

O. Wifson, A. Prasad sistla, S. Chamberlain,
and Y. Yesha. Updating and querying databases
that track mobile units. Distributed and Parallel
Databases, 7:257-287, 1999.

0. Wolfson, B. Xu, and S. Chamberlain. Lo-
cation prediction and queries for tracking mov-
ing objects. In Proceedings of the IEEE Interna-
tional Conference on Data Engineering, 2000.

[8

[9

[10]

