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ABSTRACT

It is well known that context plays an important
role in the meaning of a work of art. This paper
addresses the dynamic context of a collection of
linked multimedia documents, of which the web is a
perfect example. Contextual document semantics
emerge through identification of various users’
browsing paths though this multimedia collection. In
this paper, we present techniques that use multimedia
information as part of this determination. Some
implications of our approach are that the author of a
webpage cannot completely define that document’s
semantics and that semantics emerge through use.

1 INTRODUCTION

Information is increasingly becoming ubiquitous and
all pervasive, with the world-wide web as its primary
repository. The rapid growth of information on the
web creates new challenges for information retrieval.
The goal of our research in the last few years has
been to bridge the semantic gap between the ways in
which users request web pages (or resources, in
general) and those users’ real needs, and ultimately,
to improve the quality of web information retrieval.

The development of feature-based techniques for
the retrieval of multimedia information has
emphasized the notion of similarity with respect to
low-level features. In our view, researchers in
content-based retrieval should now concentrate on
extracting semantics from multimedia documents so
that retrievals using concept-based queries can be
tailored to individual users. Following the semantic
web paradigm, techniques for the semi-automatic
annotation of multimedia information should be
developed. Following Berners-Lee et. al. [1], a
typical example would be a user request to plan a
vacation where the painting shown in Figure 1 is
being exhibited, where the user knows neither its title
nor who painted it, or where paintings of the same
style are being exhibited.

Existing management systems for multimedia
document collections and their users typically are at

cross-purposes. While these systems normally
retrieve multimedia documents based on low-level
features, users usually have a more abstract notion of
what will satisfy them. Using low-level features to
correspond to high-level abstractions is one aspect of
the semantic gap Gudivada and Raghavan [3]
between content-based system organization and the
concept-based user. Sometimes, the user has in mind
a concept so abstract that he himself doesn’t know
what he wants until he sees it. At that point, he may
want to access multimedia documents similar to what
he has just seen or can envision. Again, however, the
notion of similarity is typically based on high-level
abstractions, such as events taking place in the
document or evoked emotions. Standard definitions
of similarity using low-level features generally will
not produce good results.

Figure 1 — A Particular Painting

In reality, the correspondence between user-based
semantic concepts and system-based low-level
features is many-to-many. That is, the same semantic
concept will usually be associated with different sets
of features. Also, there can be many different
multimedia documents having similar features, which
satisfy different needs for different users, such as
when their relevance depends directly on an evoked
emotion.
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Multimedia annotations should be semantically-
rich, and exhibit the multiple semantics mentioned
above. It is our belief that these multiple semantics
can be discovered by the way multimedia information
is used. This can be accomplished by placing
multimedia information in a natural context-rich
environment, for it is by context that multiple
semantics emerges.

There are two important kinds of context: static
context and dynamic context. The author of the
multimedia document, who places semantically
similar information in physical proximity to each
other, defines the static context, which we may also
call structural context.

Dynamic context is the user’s contribution.
Semantics emerge through identification of various
users’ browsing paths through a linked multimedia
document collection. This follows from the fact that
over short browsing paths, an individual user’s wants
and needs are uniform. Thus, the various sub-
documents visited over this path exhibit uniform
semantics in congruence with these wants and needs.
This illustrates the concept of semantic coherence.

The web happens to be a perfect example of such a
context-rich environment.

Based on the above, we are convinced that an
important problem is to semi-automatically develop
web page annotations based on cross-modal
techniques for text, images, video, and audio
information.

The semantics of a web page is defined by its
content and context. Understanding of textual
documents is beyond the capability of today’s
artificial intelligence techniques, and the many
multimedia features of a web page make the
extraction and representation of its semantics even
more difficult. Modern search engines rely on
keyword matching and link structure, but the
semantic gap is still not bridged. Previous studies
have shown that users’ surfing on the web exhibit
coherent intentions (or browsing semantics) and that
these intentions can be learned and used for the
prefetching of related web pages Ibrahim and Xu [4].
In our approach, the semantics of a web page can be
derived statistically through analyzing the browsing
paths of users toward this page. For this reason, we
also refer to these emergent semantics of a page as
dynamic semantics.

We use the technique of latent semantic analysis
Deerwester et. al. [2] to determine the semantics of
web pages, derived from their textual features, image
features, and structural features. We have previously
shown that latent semantic analysis can discover that
certain sets of different image features co-occur with
the same textual annotation keywords Zhao and
Grosky [7]. Using this technique, we represent each

document in a reduced dimensional space, where
each dimension corresponds to a concept, each
concept representing a set of co-occurring keywords
and image features. Resulting keyword searches for
web pages become much more efficient after this
transformation; more efficient than if we used latent
semantic analysis on just the keywords. Building on
this insight, an important aspect of our current work
is to bring multimedia information into the definition
of web-page semantics.

We envision the following scenario. A web page
does not have a fixed semantics, but multiple
semantics that vary over time. Each element of a
webpage’s multiple semantics corresponds to a group
of users who visit this particular page through similar
browsing paths, and is defined in terms of the
contents (both textual and visual) of these pages, the
structural layout of these pages, and the amount of
time spent browsing these pages. As different users
visit a given page, its semantics changes. Similarly,
as users browse the web, they incrementally build up
semantic profiles. By comparing a user’s browsing
semantics with the semantics of pages on the web, we
can make intelligent suggestions as to what web
pages the user should further examine. Similarly, a
user can use our system to query for page
suggestions. However, instead of giving only textual
keywords as input, he can also use visual and
structural cues. Also, users can issue query-by-
examples; that is, they can give the search engine
examples of acceptable web pages.

The main motivation for this work is our belief that
short sub-paths of a user’s browsing path through the
web exhibit uniform semantics, and that these
semantics can be captured, easily represented, and
used to our advantage. Paths that are more heavily
used will be given higher weight in determining the
appropriate semantics. This is a social theory of
semantics, akin to collaborative filtering Shardanand
and Maes [6], where the web pages similar to a given
web page, w, are the pages that are liked by other
users who also liked w.

This paper is a preliminary sketch of some ideas
we are currently implementing in this area. In the
next section, we explain our general approach.

2 OUR APPROACH

Our belief is that a user’s browsing path through
the web exhibits what we call semantic coherence.
That is, while the entire user’s path exhibits multiple
semantics, especially pages far from each other on
the path, neighboring pages, especially the portions
close to the links taken, are semantically close to
each other. Our tasks are to characterize the



contiguous sub-paths of a user’s browsing path that
exhibit similar semantics and detect the semantic
break points along a user’s browsing path where the
semantics change appreciably, as well as to
categorize the semantics of each web page based on
the totality of users’ browsing paths.

We now formalize this concept. As is usually done,
we treat the web as a directed graph, the nodes
corresponding to web pages and the edges
corresponding to links. Each edge will be labeled by
the link identifier of its corresponding link. We
define a browsing path as a sequence <nj, €, Ny, €,
ns, ..., Ng.1, €q.1, Ng™>, Where

1. For1<j<q,nis anode corresponding
to web page P;.

2. For 1 £ j < ¢gl, ¢ is an edge
corresponding to link L, which is a link
from page P; to page Pj...

From the complete set of web pages under
consideration, we extract a global set of textual
keywords, as well as a set of visual keywords and
structural keywords. We are experimenting with
various techniques for this task.

For each multiset', M, of sub-paths that we are to
analyze, we then form three matrices: a term-path
matrix, an image-path matrix, and a structure-path
matrix.

TPj;, the (i,j)th element of the term-path matrix, TP,
is determined by the strength of the presence of the i
textual keyword, t;, along the j™ browsing path, <nyj,
€1 Maj, €2, N3y -+, Np1j, €q-1j, Ng>, as well as how
many times this browsing path occurs in M. The
strength of t; is determined by how many times this
term occurs on pages P, ..., Pyj, how much time the
user spends examining the page(s) where t; occurs,
and how close each occurrence of t; on page Py; is to
both the outgoing anchor position of link Ly; and the
incoming anchor position of link Ly, if the latter
exists.

Similarly, IP; [SP;], the (ij)" element of the
image-path matrix, IP [SP], is determined by the
strength of the presence of the i visual [structural]
keyword, v;, along the j™ browsing path, as well as
how many times this browsing path occurs in M.

In the following discussion, we will be referring
to an overall keyword-path matrix, KP. This matrix
will be either TP, TP concatenated with IP, TP
concatenated with SP, or TP concatenated with both
IP and SP. If TP is an r x t matrix and IP is an s x t
matrix, then the concatenation of TP with IP is
defined as the (r+s) x t matrix, KP, where,

! Some sub-paths occur more than once, as many
users trod the same byways and the same user travels
the same way many times.

TP, ifi=1..r

" I, ifi=r+l.r+s

The other concatenations are similarly defined.

After suitably normalizing KP based on the
distribution of the wvarious keywords over the
browsing path collection, we then perform latent
semantic analysis on KP. That is, we do the
following,

1. We use the singular value
decomposition to find matrices U, X,
and V, such that KP = UZV', and

e U is an m x n matrix, while X
and V are n x n matrices

e U'Uand V'V are both equal to
the n x n identity matrix

e ¥ = diag(cy, 62, ..., G, O, ...,
0), where r = rank(KP) and the
singular values are 6; > 6, > ...
>0,>0

2. Choosing® an appropriate k < n, we
define

e Uy as the submatrix of U
consisting of its first k columns

e 3 as the submatrix of X
consisting of its first k rows and
columns

e V., as the submatrix of V
consisting of its first k columns

3. Defining Ay = UkaVkT, we then have
that Ay is the best rank k approximation
to A. As is well known, Ay reveals the
latent structure of A, combining linear
combinations of keywords into new
concepts that are more meaningful.

An obvious question concerns the nature of the
sub-paths we are going to use in the above
calculations. One of the approaches we are
experimenting with has the following iterative
structure:

1. Choose an initial set of subpaths for the
above calculation

2. Calculate webpage semantics in terms of
the results of the above calculation

3. Define the semantic breakpoints of user
browsing paths as explained below

4. Recalculate webpage semantics based on
these semantic breakpoints, as explained
below

? An interesting technique for finding an optimal
value of k can be found in [ZMS98].



5. Recalculate the semantic breakpoints of
user browsing paths based on the new
webpage semantics

6. Keep iterating steps 4-5 until a stopping
criterion, based on the convergence of the
webpage semantics and the semantic
breakpoints, is satisfied

For Step 1, we choose an initial set, X, of subpaths
to be all subpaths of length less than or equal to some
fixed, arbitrary value, A, which has the property that
no subpath in ¥ which ends at a webpage, w, is a
subsequence of another subpath in £ which also ends
at webpage w. Each of these subpaths can be
represented by a point, found via latent semantic
analysis, in a reduced dimensional space. Call this set
of points P. The semantics of a web page, w, can
then be defined, in Step 2, as the subset of P
corresponding to the sub-paths that end at page w.

The semantic breakpoints of a subpath of a user’s
browsing path, <nj, e, ny, €5, n3, ..., N1, €q.1, Ng>,
Step 3, may then be found as follows. For each of the
webpages on this browsing path, Py, ..., Py, calculate
its semantics as defined above. Suppose these
semantics are Py, ..., Py, respectively, where each P;
is a set of points, as mentioned above. We can
formulate a distance function on point sets, d, such
that, if d(P;, P;) is less than some threshold, we input
both P; and P; to an intersection-like operator,
intersect, producing a new, combined semantics. We
then execute the following,

1. i=q

2. Ti = Pi

3. c=true

4. while (candi>1)

5. if d(T;, P;.;) > threshold then c=false
6. else {T;., = intersect(T;, P;.;)

7. i=i-1}

When finished, we determine the value of 1. If i =1,
then there are no semantic breakpoints in the subpath,
whereas if i > 1, the semantic breakpoint in the
subpath closest to webpage P, lies between Pi; and
P;. See Figure 2 for an illustration of this process.
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Figure 2 — Semantic Breakpoint Calculation

In Step 4, for a given webpage, P,, we consider all
subpaths ending at P,. For each subpath, we find the
semantic breakpoint, if any, as above. If there are no
semantic breakpoints in the given subpath, that
subpath remains unchanged. If, however, the
semantic breakpoint closest to Py lies between P;;
and P;, we transform the given subpath to the subpath
starting at P; and ending at P,. We then use these
transformed subpaths to recalculate Py’s semantics.
See Figure 3 for an illustration of this process.
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—
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Figure 3 — Recalculating Webpage Semantics

3 CONCLUSION

We have presented our notion of webpage
semantics, which are an emergent property of their
use. This is similar to the approach of Santini, Gupta
and Jain [5] for image databases. We do not deny,
however, that webpage authors can also contribute
webpage semantics via the classic semantic web. Our
approach, however, follows from our belief that
webpages are accessed, used, appreciated, and
enjoyed for myriad reasons, some of which are quite
different from what the webpage’s author intended or
realized.

We are implementing a proof-of-concept system
for our approach. Without some form of cooperation,
it is virtually impossible to get valid web usage data
from surfers on the web. If there were a new standard
to capture this information, it would be possible to
send out spiders across the web to gather this data,
just as keywords are captured from web pages to
enable web search engines to function. In lieu of this,
we are working with a large website instead of the
entire web and deriving the necessary data from the
access logs.

Semantic of web pages derived in the last two
objectives can be applied to web information retrieval
in a number of ways. It can be used to improve the
effectiveness of web search engines, to enhance the
organization of web servers, as well as to pre-fetch
documents for clients to tolerate web access latency.
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