
Conceptual Model of Web Service Reputation�

E. Michael Maximilien
IBM and NCSU

maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

singh@ncsu.edu

ABSTRACT
Current Web services standards enable publishing service descrip-
tions and finding services on a match based on criteria such as
method signatures or service category. However, current approaches
provide no basis for selecting a good service or for comparing rat-
ings of services. We describe a conceptual model for reputation
using which reputation information can be organized and shared
and service selection can be facilitated and automated.

Keywords
Web services, reputation, endorsement, trust

1. MOTIVATION
Web services promise the dynamic creation of loosely coupled

information systems. However, current approaches are logically
centralized and lack key functionality, especially to locate, select,
and bind services meeting certain criteria of quality. Recently, we
developed an architecture that uses software agents who serve as
proxies for clients and interact with one or more agencies through
which service reputations and endorsements are disseminated. How-
ever, this and other service architectures leave open some key se-
mantic questions. Specifically, a proxy should be able to discover
and understand new service attributes from their descriptions, es-
pecially as they evolve over time, and an agency should be able to
aggregate the right information about service quality and present it
suitably formally described that they can be understood by proxies.

We address these semantic questions by developing a concep-
tual model of a service provider’s reputation for delivering quality
services. The conceptual model has a generic component (e.g., at-
tribute types and common attributes such as price, on-time deliv-
ery, and so on) and can be enhanced with domain-specific com-
ponents (e.g., closeness of itinerary to desired times, which makes
most sense for services in the travel domain). By combining ser-

�We are indebted to Amit Chopra, Ashok Mallya, Amit Sheth,
Raghu Sreenath, and Pınar Yolum for useful comments. This work
was supported by IBM and the National Science Foundation under
grant ITR-0081742.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

vice considerations with semantic web representations, this work
fits into the recent activity on semantic Web services.

1.1 Background
For our purposes, a Web service encapsulates functionality that

can be described, located, and invoked over the Web. [Curbera
et al., 2002] present a tutorial on current Web services standards
and their typical usage. Here is some essential background for
this paper. To facilitate interoperability by making Web services
neutral as to vendor and platform, a service is described using an
XML application standard called Web Service Description Lan-
guage (WSDL). Service descriptions are cataloged using a standard
registry definition called Universal Discovery, Description and In-
tegration (UDDI).

UDDI registries contain white pages for each registered provider.
Each provider can publish service descriptions, which describe how
to bind to and invoke a service. References to concrete service im-
plementations are available for binding as part of the tModels—or
template models—of the service. A service can possibly be pro-
vided by many businesses; in fact, a business may provide many
implementations of the same service. Typically, clients know the
desired service interface a priori. They find a desired implementa-
tion by querying registries for services meeting certain criteria and
implementing known service interfaces.

1.2 Current Approaches
A key limitation of current approaches is that they lack dynamic

discovery and binding processes. We need an architecture that al-
lows clients of services to automatically select and bind with de-
sired services, and with minimal intervention by the designers and
implementers or the end users. Further, current approaches support
no memory of service bindings and interactions, except whatever a
specific application programmer may include in an ad hoc manner.
Thus clients cannot learn from their past interactions to improve
future decisions. Also, there is no systematic support for learning
from the past interactions of others.

Although much data handling and underlying protocols are auto-
mated through current standards, key aspects that support flexible
decision-making with respect to the composition and selection of
services are still treated in an ad hoc manner. Making these aspects
systematic is the main motivation for our approach.

1.3 Organization
The rest of this paper is organized as follows. Section 2 intro-

duces our technical framework and the challenges in adding reputa-
tion for Web services. Section 3 describes our proposed conceptual
model for reputation, and includes an extensive example. Section 4
presents some related literature and further directions.

2. FRAMEWORK
We now introduce our basic framework and the challenges it

raises.

2.1 Architecture
Any conceptual model must rely upon an execution architecture.

For concreteness, we describe our recently introduced proxy-based
architecture [Maximilien and Singh, 2002]. Our conceptual model
is compatible with other architectures as well, but we lack the space
to describe additional candidates here.

We propose the addition of a Web Service Agent Proxy (WSAP)
to access each service. For our purposes, an agent is a software
component that automates some tasks for its principal. Agents
communicate with other agents, accept requests from their users,
and are typically autonomous. A WSAP is an agent that acts as
a proxy for clients of Web services. That is, a client would have
a WSAP for each service that it needs. WSAPs are knowledge-
able about the various service standards. All activities of the client
pertaining to the given service—including requests and responses,
and communications with UDDI registries and bindings—occur
via the WSAP for that service. In this manner, when the client
needs to bind to a service, it instantiates a WSAP, which consults
outside registries as well as reputation and endorsement agencies,
helps find appropriate providers, records any feedback from the
client, learns from the experience, potentially shares its knowledge
with the external agencies and other WSAPs, and hopefully helps
find better providers the next time around. Figure 1 provides an
overview of how clients typically use WSAPs.

2.2 Key Concepts
A distributed trust system consists of a set of principals, i.e.,

the parties involved either as service provider or requester. The
principals interact with each other over a set of services. A rating
of a service is a vector of attribute values. The reputation of a
service is a general opinion i.e., it aggregates the ratings of the
given service by other principals. Typically, a reputation would be
built from a history of ratings by various parties. An endorsement
of a service by a principal is modeled as a boolean scalar and a time
limit on the validity of the endorsement.

Although we concentrate primarily on reputation, the underlying
conceptual model is quite similar for endorsements as well. This
is because an endorsement effectively states that the service being
endorsed offers high quality with regard to some selected attributes:
price, reliability, and so on.

In our proposed approach, WSAPs would maintain and con-
tribute ratings to others and discover reputations. However, the rat-
ings are based ultimately on feedback received from their clients.
Some service qualities such as price and delay may be calculated
automatically, whereas others may require human participation. Even
the latter kind, although clearly harder to automate, can be accom-
modated by our architecture. For such cases, the application should
be designed so that it is possible to receive feedback from the hu-
man user after usage of the service. In this case, the WSAP will
exploit this human feedback to learn the user’s preferences.

2.3 Challenges
Our architecture opens up some interesting challenges, of which

the following are germane to the topic of this paper.

2.3.1 Conceptual model of service attributes
Can we define a generic conceptual model for attributes reusable

across domains?
Our agents are configured to capture the wishes of the applica-

tion user. The agent uses this configuration information to maxi-
mize the utility of the user. However, in order for the agent to make
intelligent decisions it will need more than just the reputation and
endorsement agencies. It will need knowledge of attributes the user
cares about, such as the following:

� The threshold of the values for attributes that the user is will-
ing to accept.

� The risk tolerance of the user. For instance, the WSAP could
find a reputable service matching the user’s preferences but
because it is relatively new, selecting that service could be
regarded as higher risk than a known more mature service.

Answering the above question will enable our WSAP agents to
efficiently and thoroughly capture the preferences of their WSAP
users. Further, the service selection will often need to be fast be-
cause the user may be waiting for a service to be found. There-
fore, the agent must be able to make quick decisions, comparing
the user’s preferences with information provided by the agencies.

2.3.2 Semantics of service attributes
How can we add semantics to service attributes, thereby allow-

ing a WSAP to dynamically discover new attributes without having
to be reconfigured or reprogrammed?

How can the agent acquire the knowledge of new attributes that
were not specified by its client? That is, how can the agent relate the
attributes specified by its client with attributes from other agents?
The W3C’s Semantic Web initiative [W3C, 2000] is a promising
direction in capturing the semantics of service attributes.

2.3.3 Effects of attribute type on reputation
How should reputation be related to history of previous interac-

tions? Should the effect of an interaction decay over time?
The notion of reputation is tightly bound to history and time.

The reputations of human services tend to vary with time and rec-
ollection. In the digital world, history and memory can be col-
lected easily. Because of this, the notion of reputation for humans
and for agents have important differences. Some reputation sys-
tems [Zacharia and Maes, 2000] build in this decay effect. One
approach to include time in our proposed architecture would be to,
for instance, associate timestamps with attribute values, thereby al-
lowing the reputation rating to weight attributes depending on their
age. Further, since service quality will tend to change over time,
decaying the reputation helps by reducing the effect of interactions
over time, effectively increasing the currency of the evaluations.

A similar situation arises with endorsements. The goal is that it
should be as easy as how people now look into the local newspaper
and select a movie by looking at the number of stars it was awarded.
Of course, a movie-goer may be biased towards a movie because
of his knowledge of its actors, director, or producers—these in-
tangibles will have conscious and subconscious implications to the
movie-goer’s decision. This is not completely the case for the soft-
ware agents. However, endorsements do affect the agent’s final de-
cision. An endorsed service can similarly bias an agent towards a
particular service regardless of its rating. How should agents weigh
reputation ratings with respect to endorsements? What we need is
a scheme by which attributes and endorsements can be systemati-
cally combined.

3. CONCEPTUAL MODEL
A Web service represents a set of functions addressing a particu-

lar domain. For instance, a travel service might include functions to
return a list of trips for a particular airline on a specified date, time,

Client

WSAP
Service 1

WSAP
Service 2

Config 1

Config 2

Service Providers

Service 1
Implementation A

Service 2
Implementation A

Service 1
Implementation A

Service 2
Implementation A

Clients typically have one

WSAP per Web service

uses

selects

UDDI Registry

Service 1
Interface

Service 2
Interface

Selection is done
consulting agencies

Figure 1: WSAP operation summary

origin and destination airport. For each service we can extract a se-
ries of generic attributes and domain-specific attributes that apply
to the service. For instance, for the travel service we mentioned,
a generic attribute could be the speed at which a search produces
its results and a domain-specific attribute could be the accuracy of
the return results—e.g., whether it includes up-to-the-minute trip
information. From this example and what we discussed before, it
is clear that a conceptual model for the reputation of a service must
include the different categories of attributes that apply to a service.

The reputation of the service is a function of the various at-
tributes that matters to a specific agent. For instance, an agent that
cares more about accuracy of the trips returned would take into
account this attribute more than the relative price attribute, which
might be of concern to another user. In essence, the relative weight
given to an attribute affects the overall reputation of the service and
depends on the user of the service. This is analogous to how var-
ious human real world services can appear to be rated differently
depending on the end user who is providing the rating. A car rental
service that charges more but is flexible by giving convenient ac-
cess at major airport may be of higher value to a business user than
a person looking for a rental car for vacation purposes. So within
a specific domain the reputation of the service depends on the sub-
jective view of the user of the service on the various attributes that
matters to the current agent that is proxying this service. Other
factors that affect the reputation of a service include the following.

� The relative weights given to the attributes. Each agent will
have preferences that biases it towards certain attributes and
therefore make these attributes weigh more than others for a
specific domain.

� The attribute aggregation algorithm. A simple weighted ma-
jority can be the normed algorithm but using different algo-
rithms will affect the resulting reputation value.

� The set of endorsers of the service as well as the list of trusted
endorsers for the agent. Again, matching endorsers will bias
the reputation value.

� The history of the service. The reputation of older services
will be affected more by previous usages.

� Any type of damping for the ratings as in [Zacharia and Maes,
2000] will affect the reputation value. Such damping is nec-
essary to allow for service’s reputation to be regulated. For
example, a service that acquired a bad reputation but then be-
come better (and started receiving good ratings) can have its
reputation improved since older ratings matter less than the
newer ones.

The conceptual model shown in Figure 3 represents a UML static
model for the different components that make up the reputation of
a service. First, a Service associates with one Reputation which
can have many Ratings. The reputation value is determined with
a ReputationAlgorithm that aggregates the various Attributes that
the agent determining the reputation chooses to consider. The rep-
utation is also affected by a History that keeps previous ratings for
the particular service. The rating for a service is determined by
the Principal in question and calculated using the RatingAlgorithm.
Any number of principals can endorse a Service which might affect
the calculation of the reputation since, for instance, an endorsement
by a trusted third party can be considered of higher value than cer-
tain attribute values. As mentioned above, each attribute has a value
and range, and associates with one or more Domains. Domains act
as collections of attributes for specific types of services.

3.1 Attributes model
For each domain, the attributes in that domain are important in-

puts to the overall rating and therefore the reputation of a service.
Some attributes are common across domains and some are specific
to domains. Each attribute has the following aspects.

� The value set for that attribute (and its allowed range or enu-
meration). For instance, an attribute such as failure rate or
availability for a service can be expressed as a simple per-
centage. The speed of service function execution could be
instead a simple bounded integer.

� The domains that this attribute belongs to. For instance, is
this a cross-domain attribute or an attribute specific for a
domain? And within each domain, some attributes will be
of greater importance than others—this can depend on some
standard definition of attributes for a domain.

Reputation

Service
Reference

Attribute
Aggregation

Algorithm
B0

C2

A1

Rating

Damping
Factor

User Preferences

History

Endorsement Principal 1

Endorsement Principal 2

Endorsement Principal 3

Collected as part of

agent configuration

Applicable service
domains and

their attributes

B1Service
Categories

Domains

Figure 2: Generic framework model of a service reputation

+wsdlInterface
+wsdlImpl
+uddiList

Service

1

1

1

*

«
cr

e
a

te
s»

+execute()

«interface»
ReputationAlgorithm

+execute()

«interface»
RatingAlgorithm

1

*

...

1 *

«uses»

1 1

...

+timeValid

Endorsement

-privateKey
-publicKey

Principal

+value
+range
+name

Attribute

Reputation

+value

Rating

OtherDomain TravelDomain RetailDomain

Domain

+rate

MonotonicAttr

+function

DecayingAttr

+beginTime

History

1

1 1

*

CrossDomain

Conceptual
components
for attributes
and domains

+value

Weight

Figure 3: UML conceptual model for service reputation

Domain B

A1

Domain A

Domain C

A2

B 0

A0

C3

C1
C 0

C2

Figure 4: Domain model for service attributes

� The weight of this attribute relative to its domain and the
user preferences. This would determine the impact of this
attribute on the final decision regarding a provider.

� The characteristic of the function from attribute values to rat-
ings. For instance, some attributes such as price are mono-
tonic, at least in typical business scenarios. That is, the more
the price decreases the better. Generally all agents will con-
sider price in the reputation calculation and have a preference
for lower prices. Of course, if the price were to decrease in
conjunction with reductions in the values for other attributes,
the overall reputation might not improve. For instance, for
the trip service we considered, if the price attributes of trips
were to decrease while the promptness (on arrival and de-
parture times) attribute were to become worse, then this de-
crease in price might not help the overall reputation of the
trip service.

The characteristics of attributes can be quite rich and need to
be further categorized. Initially, we consider monotonically
increasing and decreasing, S-shaped characteristics (where
there is a substantial benefit to ratings when the given at-
tribute improves, but only if it is above a tolerance threshold
and not above a saturation threshold).

� The temporal characteristic of the attribute value. A possi-
ble temporal characteristic for attributes is decaying values
where the decay function can vary from exponential to a step
function. For instance, an attribute such as accuracy in the
travel domain might be acceptable to allow a range of min-
utes up to a certain point. That is, the trip that is scheduled
for 3:00 PM does not cause major harm if the actual depar-
ture time is 3:20 PM. However, a departure of 4:00 PM might
become unacceptable for a user that depends on an on time
arrival with a gap of 30 minutes in order to catch a connect-
ing flight. Other attributes might have values that decay more
progressively rather than in a step-wise fashion.

3.2 Generic and domain-specific attributes
In general each particular domain that a service belongs to will

have its own set of attributes that apply to all services of that do-
main. However, certain attributes will be cross-domain attributes.
Figure 4 depicts this idea showing three domains with two of them
overlapping for some attributes.

As a specific example, a service such as car rental service will
involve attributes belonging to multiple domains, such as the travel
and retail domains. Attributes such as price belong to both do-
mains, but an attribute such as flexibility of reservation changes

has a specific meaning in the travel domain—clearly, allowing flex-
ible changes to a travel reservation is a particular characteristic of a
travel service that might allow important service differentiation for
a particular client and the client’s WSAP.

Determining the attributes that apply to a particular domain is a
nontrivial, but one to be decided by the community of users and
providers as they settle upon ways to distinguish and evaluate dif-
ferent offerings. This typically occurs when markets form, where
different parties position their offerings according to what they be-
lieve are their key qualities: speed, price, taste, and so on. A tech-
nical challenge here is to distribute the attributes among various
domains so that an agency does not necessarily have to capture
all possible attributes and a WSAP can search for services without
consulting an excessive number of agencies.

3.3 Adding and disseminating attributes
Another important aspect that the proposed conceptual model

allows is the creation and dissemination of new attributes for spe-
cific domains. A consequence of the attributes having a common
model and the specific attributes being subclasses of the abstract
attribute model is that new attributes with unknown characteristics
can be added to the system. New attributes are disseminated via
a domain definition that could contain references to common at-
tributes as well as to domain-specific attributes. Our conceptual
model can be readily mapped into a common schema in a standard
notational framework such as the resource description framework
(RDF). The existence of such a schema would enable the descrip-
tion and widespread dissemination of attributes. Notice that the
interesting component would be the conceptual model itself, not
the notation, although agreeing on the notation is also essential.

3.4 Example
As a comprehensive example showing how the agent proxying a

service can use the conceptual model we describe, imagine a travel
reservation Web application. This application is used by agents to
set up business and personal travel arrangements. Part of this appli-
cation is a facility to search, select, and reserve a car rental that will
be included as part of the overall travel arrangement. Since there
exist many car rental companies, each advertising its services on
the Web, it is easy to imagine that a common car rental Web service
interface could be created. Each car rental company would provide
an implementation of the service thus allowing its business to col-
laborate with others and thus integrate into coarse-grained services,
such as a travel planning service. How is the WSAP proxying the
car rental service able to pick the best service for a particular client?

Using our conceptual model, the WSAP could pick the correct
service implementation by looking at the reputation of the various
services. According to our model, reputation is a function of the
historical ratings provided by previous users filtered to take into
account the attributes that matter most to the current WSAP’s prin-
cipal. So, for instance, if the current user weighs price as an impor-
tant cross-domain attribute then services giving lower prices might
be selected over those giving higher prices. Of course, the reputa-
tion for the service will depend on several attributes. For instance,
some attributes such as comfort and reliability of the cars rented
might matter more to a traveler who intends to use the vehicle for
long subtrips than a business person on a tight budget. As another
example, though the car rental service domain attributes overlap
with a car selling service, certain attributes such as color choice will
clearly have more significance for a buyer as opposed to a renter.
Our model takes these subtleties into account, because the WSAP
is configured with attributes that apply to the domain that the ser-
vice belongs to. Of course, the choice of which domain a service

belongs to is an important precondition that must be satisfied prior
to agent configuration. However, we are assuming that this is done
as part of classifying the services prior to them being introduced
for wide availability.

Our model is generic enough to allow the introduction of new
attributes. For instance, if the domain definition for car rental was
updated to include a new attribute such as safety, then any new
agent that was configured with this attribute could take that attribute
into account for its ratings calculations. The attribute’s values could
possibly be captured as part of a user survey or automatically by
collecting information on accidents from the car types that the car
rental company rented for certain periods and the relative safety
outcome of the rentals.

A lot of engineering work goes into making a large application.
The above example is no exception. The contribution of our ap-
proach is in streamlining the attributes so that their treatment is
standardized up to a point and, where it is not standardized, placed
explicitly under the control of individual WSAPs and their prin-
cipals. New attributes can added on the fly. More importantly,
the different agencies can upgrade to the new attributes or add an
existing attribute that they had previously ignored. Likewise, the
conceptual model enables the WSAPs to share information directly
with each other, which extends their power further.

4. DISCUSSION
In principle, service standards enable applications to connect to

any suitable and accessible service provider. However, a key chal-
lenge is to select and locate a service provider who offers the best
implementation of a particular service. It is this challenge that our
approach addresses.

The Semantic Web has lately become an active area of research.
Various projects such as DAML, DAML-S, OIL, OWL, and RDF
[van Harmelen et al., 2002] address various research aspects of
adding ontology description to the WWW as well as Web services.
Current research such as [Mcllraith et al., 2001], takes an agent ap-
proach, using DAML and DAML-S in conjunction with Web ser-
vices to show how services can be dynamically composed. Though
similar in spirit, our work is focused instead on trying to define
the service attributes such that they can be dynamically discovered
and understood by the WSAP without having to force all clients to
know the set of attributes ahead of time. Further, we would like to
allow the service attributes to evolve over time without necessarily
requiring the WSAP to be reprogrammed. This is similar to the
overall aim of the Semantic Web where one vision is that annotated
semantic information will allow agents to infer meaning of the de-
scribed things on the WWW without necessarily requiring agents
to know a priori much information on the things being discovered.

Another approach for design-time service selection is presented
in [Cardoso and Sheth, 2002] where Web services are by matching
the input and output of the given services as well as some quality
characteristics with the desired criteria. Our approach differs in two
ways: (1) we assume that the Web service clients already chose the
interface of the desired services, but need to decide on a service im-
plementation, possibly at run time, and (2) the criteria of selection
reflect the reputation of the given services with respect to different
attributes.

The main goal of the WSAP when using the attributes attached
to the services is to be able to dynamically select and invoke the
best matching service. IBM’s WSIF [IBM, 2001] has a similar
aim in allowing dynamic invocation of services but in the current
incarnation of WSIF the service selection is fixed at design time.
[Fensel and Bußler, 2002] propose a complete framework to facili-
tate usage and invocation as well as composition of services called

WSMF—Web Services Modeling Framework. However, WSMF
does not address the issue of defining attributes that can adorn ser-
vices thus allowing them to be reasoned about in their domain or
across domains, as we are proposing.

[Oram, 2001] presents an overview of existing systems that use
a trust model similar to ours. For instance, the Pretty Good Privacy
(PGP) web of trust system handles automated reputation collection
to assist in verifying that public keys of principals are valid. The
popular news site Slashdot uses a manual reputation gathering sys-
tem to screen out and rank news postings, thereby allowing clients
to filter out postings that are judged to be of low value.

Reputation mechanisms are used in e-commerce Web sites such
as Amazon, eBay, and OnSale as a means of keeping track of rat-
ings [Zacharia and Maes, 2000]. A buyer or seller can capture his
experience in specific transactions by rating the other party numer-
ically or writing a text note about it. The marketplace makes this
information available to other users so they can factor it in when
deciding with whom to deal. Like in the above marketplaces, we
model reputation in terms of attributes reflecting a user’s expe-
riences with a given service. However, here the reputation data
need not originate with humans, but may be provided by agents.
More importantly, existing marketplaces have a fixed, often trivial,
conceptual model for reputation, where a single scalar is recorded
along with text comments, which cannot be used automatically.

We presented a preliminary conceptual model for reputation and
endorsement. We are building a prototype implementation that ex-
ercises this model. Eventually a model such as this should become
core of a new standard for Web service location and selection.

References
Jorge Cardoso and Amit Sheth. Semantic e-workflow composition.

Technical report, University of Georgia, July 2002.

Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana. Unraveling the Web
services Web. IEEE Internet Computing, 6:86–93, 2002.

Dieter Fensel and Christoph Bußler. The Web service modeling
framework (WSMF). In Database and Information Research for
Semantic Web and Enterprises, 2002.

IBM. Web services invocation framework (WSIF), 2001.
http://alphaworks.ibm.com/tech/wsif.

E. Michael Maximilien and Munindar P. Singh. Reputation and
endorsement for Web services. SIGecom Exchanges, 3:24–31,
2002.

Sheila A. Mcllraith, Tran Cao Son, and Honglei Zeng. Semantic
Web services. IEEE Intelligent Systems, pages 46–53, 2001.

Andy Oram, editor. Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. O’Reilly, 2001.

Frank van Harmelen, Ian Horrocks, Peter Clark, Peter F. Patel-
Schneider, Mike Uschold, Marie-Christine Rousset, James
Hendler, and Guus Schreiber. Ontologies’ KISSES in standard-
ization. IEEE Intelligent Systems, 17:70–79, 2002.

W3C. Semantic Web, 2000. http://www.w3.org/2001/sw/.

Giorgos Zacharia and Pattie Maes. Trust management through rep-
utation mechanisms. Applied Artificial Intelligence, 14:881–907,
2000.

