
Phoenix Project: Fault-Tolerant Applications

Roger Barga David Lomet
Database Research Group

Microsoft Research
One Microsoft Way,
Redmond, WA 98052

Abstract

After a system crash, databases recover to the
last committed transaction, but applications
usually either crash or cannot continue. The
Phoenix purpose is to enable application state to
persist across system crashes, transparent to the
application program. This simplifies application
programming, reduces operational costs, masks
failures from users, and increases application
availability, which is critical in many scenarios,
e.g., e-commerce. Within the Phoenix project,
we have explored how to provide application
recovery efficiently and transparently via redo
logging. This paper describes the conceptual
framework for the Phoenix project, and the
software infrastructure that we are building.

Introduction

The Problem
High availability is crucial to the success of
mission critical applications of many businesses,
especially those engaged in e-commerce.
Unfortunately, system outages do occur, which
frequently results in added costs or lost revenue.
In the longer term, customer frustration with an
e-commerce site may lead to even larger losses.

Database systems deal with system crashes in a
robust manner, recovering to the last committed
transaction. This technology is mature and cost
effective. Unfortunately, applications do not share
this robust behavior. It is very difficult for an
application programmer to deal well with a system
crash. Either programming style must be tightly
controlled, e.g. stateless applications that have no
meaningful state between transactions, or subtle
and complicated programming is needed to deal
with failures. In either case, the application
programmer needs to be aware that system crashes
are possible, and write the application accordingly.
A common outcome is that applications fail

when a system crashes. The burden then
manifests as user frustration and operational
headache as ad hoc manual efforts are made to
restore an application’s state and restart it.

Application programmers tend to write stateful
applications, retaining information necessary for
correct execution across transaction boundaries.
This natural style of programming is reflected in
standard SQL with its session state. The problem
here is losing the state when the system crashes.
This may create a “semantic mess” that frequently
requires human intervention to repair. Outages can
be very long because of this. Classical TP monitors
[BHM90, GrRe93] insist that applications be
stateless, a rather unnatural programming style.
Programming stateless “workflows” then requires a
multi-transaction application in which each step
commits and passes its “state” in a transactional
queue to the next step of the workflow.

Phoenix Project
The Phoenix goal is to enable robust applications
to be written “naturally” as stateful programs.
Importantly, the application programmer is not
required to take special measures to ensure the
persistence of application state. Phoenix deals
with system failures “transparently”, logging
component interactions and checkpointing state
to ensure that applications can be automatically
recovered should a crash occur. This enhances
application availability by avoiding the extended
down-time resulting from manual intervention,
and simplifies application programming by
avoiding the need to deal with such failures.

To realize our goal, we have explored recovery
principles and have built two prototype systems
to demonstrate the practicality of our approach.
We start with our work on recovery principles,
and then devote two sections, one for each of our
prototype systems. A final section describes
how our prototype systems can be brought
together in a system that provides an end-to-end
exactly once execution guarantee.

Recovery Foundations

We have worked to develop the underlying
technology that enables recovery. This body of
work includes both redo recovery principles and
optimizations and characterization of recovery
requirements for distributed systems.

Redo Recovery Principles
The task of redo recovery after a system crash is
to reconstruct the state of the database at the time
of the crash by redoing some subset of logged
operations in some order. Supporting recovery is
hard because it requires careful coordination of
changes to the state and the log by many system
components, e.g., cache manager, log manager,
installation procedure, checkpoint procedure, and
recovery procedure. Our recent work [LoTu02]
is a theory in which we can state the property
(invariant) that this coordination must
implement. It builds on our prior Phoenix
recovery work [LoTu95,Lo98, LoTu99].

We define a simple, abstract system model,
which includes state, changes to the state,
installing these changes into the state, and
recovering the state. We relate operation
sequences to state sequences and operation
graphs to state graphs.

Our theory describes the states that are
potentially recoverable. An installation graph
characterizes the sets of operations that can
“appear” in recoverable states. Only some of the
variables have values that are exposed to the
recovery process, and only these exposed values
need be explained by the operations in the state.

We give a general recovery procedure with a
redo test that is invoked as it reads the log to
determine whether it should or should not redo a
logged operation. We prove the recovery
procedure correct, assuming that the redo test
selects a set U of operations from the log to redo,
and that the complement I of this set explains the
exposed values in the state.

Many real redo recovery algorithms can be
modeled in our theory, e.g. LSN based
techniques [MHLPS92]. These support recovery
exactly by keeping invariant the correctness
condition for our recovery procedure. This
invariant becomes the contract that must exist
between state installation and recovery in order
for the phases of normal operation before a crash
and system recovery after a crash to interact
seamlessly.

Distributed Application Recovery
Most directly relevant to application persistence
is our framework for recovery guarantees in
general multi-tier application that makes
application state persistent [BLW02]. To provide
this strong guarantee:
• We require piecewise determinism [EJW96]

and identify the needs for logging specific non-
deterministic events. This ensures that after a
failure, an application can be replayed from an
earlier installed state and arrive at the same
(abstract) state as in its pre-failure incarnation.

• We introduce interaction contracts between
communicating pairs of application
components. For example, a committed
interaction contract (CIC) between two
persistent components requires guarantees
related to persistence of sender and receiver
state and messages. Contracts exist for
persistent component interactions with external
components (XIC) (including users) and with
transactional components (TIC) that provide
all-or-nothing state transitions (but not exactly-
once executions).

• We compose contracts into system-wide
agreements such that persistent components are
provably recoverable with exactly-once
execution semantics. We strictly separate the
obligations of a contract from its
implementation in terms of logging. We can
thus give strong guarantees to the external
users while frequently avoiding expensive
measures such as forced logging [LoWe98].

Persistent Database Sessions via
Phoenix/ODBC

Phoenix/ODBC [BL99, BL2000, BL2001] was
our first prototype system. It insulates
applications from database server failures. It
does not provide recovery from client
(application) system failures.

ODBC Background
ODBC (Open Database Connectivity) is a client
application API to SQL database servers based
on the X/Open SQL Call Level Interface
standard. Applications use ODBC to access data
in any of the major commercial DBMS’s, all of
which support ODBC. An application makes
data accesses via ODBC using SQL statements
written in either ODBC SQL or DBMS-specific
SQL. The application exploits the following
standard client side software when using ODBC.

ODBC Driver: a DBMS vendor provided
module that responds to all client application

calls to the ODBC API. The driver translates
SQL statements into DBMS-specific SQL that it
passes to the server and reformats results
returned from the DBMS into ODBC format.

ODBC Driver Manager: a platform component
that manages communications between the
application and vendor provided ODBC drivers.
The driver manager loads the ODBC driver
appropriate to the database being accessed and
passes all application requests to it.

An Example ODBC Database Session
Our example ODBC database session involves
three tables: a master customer table, a detail
orders table, and summary invoice table. The
task is to extract the appropriate records for a
customer with the last name “Smith,” find that
customer’s current orders, and aggregate the
order totals into the invoice summary table. This
client application might be coded as in Figure 1:

1. Create an ODBC session by opening a
connection to the server, log on the database
and set session specific attributes

2. Request the server create a result set from the
customer table (A) consisting of records with
a last name of ‘Smith’

3. Fetch customer records from the result set,
until the appropriate customer record is found.

4. Open a cursor on the orders table (B) for
orders matching this customer’s ID

5. Fetch all matching order records for this
customer ID.

6. Calculate the aggregate of the order records.
7. Send a command to update the invoices table

(C) with the calculated aggregate.
8. Close connection to database, terminating the

session.

Figure 1: Steps of a “typical” ODBC application.

Consider what would happen were the database
server to fail during this ODBC database session.
The main problems are:
• Server Failure: ODBC functions can have

undefined behavior when the server is down
this can require that the application be
terminated.

• Application Availability. The application’s
session with the database is lost. The resulting
partial session execution can leave the
application state confused, requiring long
outages in order to reconstruct it manually.

• Loss of Transient State. If a failure occurs
after the application has created volatile state,
e.g. result sets from SQL statements, this state
is lost.

• Extra Complexity. For an application to cope
with database server failure requires additional
code to deal with these problems. This
increases application complexity, delays
deployment, contributes to bugs, and can
further reduce overall application availability.

Phoenix/ODBC Implementation
To provide session availability, Phoenix/ODBC,
a Phoenix-enabled ODBC Driver Manager,
wraps any native ODBC driver, intercepting
application requests going to the database as well
as responses returned from the server. This
architecture is illustrated in Figure 2 below.

Figure 2: Illustration of the main components in the
Phoenix/ODBC architecture.

Phoenix/ODBC Actions
Phoenix/ODBC creates a virtual ODBC database
session for an application (step 1 of our example)
and maps it to one or more real ODBC database
sessions. It detects server failures and recovery
by timing out requests and pinging the server
until it recovers. It then re-associates the virtual
session and its associated state to a new ODBC
session when it reconnects to the server. Finally,
when the session terminates it cleans up any
persistent session state that was created (step 8).

Phoenix/ODBC makes transient session state
persistent. It logs statements that alter session
context (statement 1). It rewrites SQL
statements to create persistent database tables
that capture application session state, before
passing the request on to the native ODBC driver
(result sets of statements 2 and 4 will be made to
persist). Phoenix/ODBC intercepts server
responses, variously caching, filtering, and
reshaping result sets, and synchronizing with
state materialized on the database server
(partially delivered result sets in statements 3 and
5 are synchronized to provide seamless delivery).

Decomposing Application State
We decompose server session state into
elements, each of which has a different lifetime
and recovery requirements. These include:
ODBC Session Context – All client settable
attributes of a session, including connection
request and user login information.
Environment, connection, and statement
attributes – Context, not associated with
attributes, includes user identification, current
database, user temporary objects, and

Phoenix/ODBC
Driver
Manager

ODBC
Driver

unacknowledged messages sent by the server to
the client.
Result Generating SQL Statement – SQL
statement that will return one of following:
• A result set for a SELECT statement.

• A global cursor that can be referenced outside
the SQL statement.

• A return code, which is an integer value.

• Output parameters, which can return either data
or a cursor variable.

Delivery of SQL Statement Results
A challenging aspect of masking server failures
is seamless delivery of results to the client. If
the statement generates a result, Phoenix/ODBC
takes the following steps to ensure it will be
recoverable in case of server failure.
1. Access the result set metadata that describes
the columns in the result set.
2: Use the metadata to generate a CREATE
TABLE statement that is sent to the server to
create an empty persistent table for the result.
3: Execute the SQL statement to insert its result
in this persistent table at the server.
4: Keep track of the current location in the now
persistent result set. After a failure, access is
resumed at the remembered location of the last
access before the failure.

At step 3, Phoenix/ODBC creates a stored
procedure that encapsulates the application’s
SQL statement. The advantage of using a stored
procedure is that all the data is moved locally at
the server. This procedure, using only ANSI-
standard SQL, is:

CREATE PROCEDURE P (@T string) AS

INSERT <original application SQL

statement>

INTO T

Procedure execution is an atomic SQL statement.
Phoenix/ODBC then issues the SQL statement
SELECT * FROM T to open the table and
returns control to the application.

Summary
Phoenix/ODBC relieves the application
developer from coping with the programming
complexity of handling server failures, increases
the availability of the application, and in many
cases avoids the operational task of coping with
an error. Indeed, a user of the application may
not be aware that a database server crash has
occurred, except for some delay.

Persistent Components via
Phoenix/COM+

Phoenix/COM+ is a runtime service that provides
transparent state persistence and automatic
recovery for component-based applications.
Many transient system failures are recoverable in
this way because failures are frequently so-called
“Heisenbugs”.

Phoenix/COM+ is implemented as a service in
Microsoft’s .NET runtime and supports any
component based application. The
implementation is based on the recovery
guarantees framework [BLW02], the techniques
and protocol of which offers several distinct
advantages:
• Exactly-once execution semantics;
• Protocols that minimize logging cost,

especially log forces, and enable efficient
log management;

• Recovery independence, allowing
components to recover independently;

To achieve fault-tolerance using Phoenix/COM+

requires the application programmer to identify
the stateful components and declare them as
persistent, transactional, or external. The
service transparently logs component
interactions and, if a failure occurs,
automatically recovers all components marked
persistent up to the last logged interaction.
Components marked transactional are
recovered up to the last successfully completed
transaction – transactions in-flight during the
failure will be aborted by the database and it’s
assumed the application is written to deal with
(retry) failed transactions – a reasonable
assumption for transactional applications.
External components are outside of the
boundary of the system, and cannot be
recovered. However, we limit our dependence
upon them by prompt logging of interactions
with them.

Developing Fault-tolerant Applications
Phoenix/COM+ offers three distinct advantages
to application programmers in developing a fault
tolerant enterprise application:

Stateful Applications
Phoenix/COM+ enables component-based
applications to be written “naturally” as stateful
programs. Importantly, the application
programmer is not required to take any special
measures to ensure the persistence of application
state. Phoenix/COM+ deals with system failures

by logging component interactions and
checkpointing state to ensure that application
state can be automatically recovered.

Error Handling
Stateless applications have difficulty dealing
with aborted transactions. If an application
executing a transaction were to fail, there is no
easy way for aborted transactions to return error
status. Nor can the application provide, in
response to the error, a programmatic way of
dealing with the error that is specific to the
nature of the error. There is simply no place to
put the program logic, which must exist outside
of the failed transaction.

Phoenix/COM+ permits stateful application
components to “begin” and “end” transactions,
and, because these components have state
outside of transactions (and state that persists
across system failures), they are able to see
transaction error codes, and act on them as
appropriate. For example, such an application
can test the error code to decide whether to
simply re-execute the transaction or change input
parameters before re-execution, and can decide
at what point to abandon the effort and itself
return an error code describing what has
happened.

Debugging
The log captures the precise set of events that led
a system to a failure. If this is a hard failure (a
“Bohrbug”), the failed state will be re-created.
This facilitates the debugging of distributed
enterprise systems. Even when the failure is soft
(a “Heisenbug”), the log should offer clues as to
what when wrong.

System Attributes (the “ities”)
Phoenix/COM+ captures component state by
logging interactions between components,
forming an event history. This history is on the
log and can be used to recover, i.e. make
persistent, a component’s state up to the last
logged interaction. That is, Phoenix/COM+

captures the execution state of a component
while it is active. This ability to make
application state persistent at a fine execution
granularity provides important benefits to
enterprise applications.

Availability
Phoenix/COM+ provides high availability by
performing database style recovery for
application components using its own logging
and recovery infrastructure. We (in the longer
term) avoid double logging, and exploit logical

logging as much as possible. This minimizes
normal execution cost.

For most middle tier applications, the majority of
the response time is the result of communication
with other remote applications or resource
managers. Replay of an application replaces
those interactions with the logged effects of the
interactions that took place originally. Hence
replay is much faster than original execution.
The fast replay enhances application availability.

Scalability
Scalability comes largely from reusing resources
drawn from a pool of anonymous resources, each
in a suspended state. For example, a database
connection is multiplexed among many
applications. When an application is finished
with it, the connection is returned to the pool and
is reused by the next application. Similarly,
application components themselves can be
multiplexed between user requests when
components are stateless between requests.

Phoenix/COM+, however, permits components to
retain state between requests, whether the
requests are from users or other components. It
also permits components to have state between
transactions. We can “pickle” the state: between
requests by taking a checkpoint; or at an
arbitrary execution point because Phoenix/COM+

captures the logged interactions from the point at
which the state first became important up to the
current execution point. Logical identification
of COM+ components permits us to re-instantiate
the state using a process or thread from a pool of
such resources. Since replay is fast, this is a
feasible way of dealing with reclaiming a thread
or process and permitting another request to
utilize this underlying system resource.

Load Balancing
In a clustered server environment with shared
disks, Phoenix/COM+ allows transparent fail
over of stateful components from one machine to
another. For example, a set of stateful
components may be running on machine A,
where the state for these components has been
recorded in the log on a shared disk. If an
administrator notices A is overloaded, he can
selectively terminate some stateful components
on A and direct their failover to Machine B,
where subsequent client requests can pick up
where they left off. This works because the
component state is automatically recovered and
the runtime updated to redirect subsequent calls
for these components to B. Importantly, this
failover can occur at any time, not just between

requests, because Phoenix/COM+ captures state
at any execution point.

Phoenix/COM+ Implementation
Phoenix/COM+ exploits the component wrapper
mechanism in Microsoft’s .NET runtime that
transparently intercepts component events, such
as creation, activation, and method calls. This
architecture is illustrated in Figure 3. While
Phoenix/COM+ is implemented using the
Microsoft .NET runtime, the techniques should
be relevant to other middleware architectures,
e.g., CORBA and Enterprise Java Beans (EJB).

The Phoenix/COM+ runtime masks failures from
the application and initiates recovery to
reconstruct impacted components.
Phoenix/COM+ mechanisms do the following:
1. Logging – Intercept interactions between

components and logs information sufficient to
recreate components and recover their state to
the last logged interaction.

2. Error Detection – Detect errors arising from
component failure and masks the error from
the client, and initiates component recovery.

3. Component Recovery – Recreate an instance
of a failed component and re-install its state
by replaying intercepted calls of the failed
component from the log. After recovery,
COM+ runtime tables are updated to direct
future calls to the new component.

Post failure execution requires a different
process (or thread) than used by the original
execution. Therefore, Phoenix/COM+ virtualizes
components, providing each with a logical id
independent of its mapping to a process. This
logical id identifies the program and state of a
component. During execution, this id is mapped
to the specific threads and/or processes that
realize the component.

Figure 3: Illustration of the main Phoenix/COM+

elements involved with making components persistent.

Exactly Once Semantics

The overall Phoenix goal is to provide “exactly
once” semantics. That is, a user should perceive
the behavior of the system as if no failure has
ever occurred and his request was executed
seamlessly, from the time it was submitted until
he receives a reply. This requires a complete,
end-to-end story. Phoenix work, along with other
work done with colleagues, can provide this
seamless exactly once execution. The previous
section described how Phoenix/COM+ provides
persistent components in the middle tier. In this
section we describe how we can provide
transactional components for database
interactions and extend persistence to the
desktop via enhancing the an internet browser.

Transactional Components
Transactional components are components that
only promise that state and messages will persist
should the transaction they are engaged in
commit. If the transaction aborts, all
information, including even knowledge of the
existence of the transaction, can disappear.
Note that because a SQL database does not
automatically persist session state or result
messages, that the database by itself is not a
transactional component. Hence, normal
interactions with such a database do not provide
the required guarantee.

Phoenix/ODBC provides exactly the persistent
state and messages required of a transactional
component when interacting with a SQL
database. Only the syntactic nature of its
interface prevents it from being a COM+

component, and hence a Phoenix transactional
component. It supports the transactional
interaction contract (TIC) between persistent and
transactional components. Unlike the committed
interaction contract, the strong guarantees of the
contract are only required should the transaction
commit. If the transaction aborts, amnesia is
possible for either transactional or persistent
component, without sacrificing any recovery
guarantees. Our stateful persistent components
can safely engage in Phoenix/ODBC “sessions”
extending over several transactions. If a
transaction aborts, the persistent component’s
application program can take its own remedial
action.

Persistent Browser State
Gerhard Weikum and German Shegalov have
implemented a prototype system at the U. of the
Saarlands that extends recoverable components
to an Internet browser as client, an http server

Log Log Log interactions,
checkpoint state IIFF
RREEQQUUIIRREEDD to fulfill CIC

CIC

App see COM
interface

CIC: keeps App’s
recoverable

Com
Object
App 1

Phoenix/COM +

Com
Object
App 2

Phoenix/COM +

with a servlet engine as middle-tier application
server, and a database system as backend data
server. Specifically, they have built the prototype
using IE5 as browser, Apache as http server, and
PHP as servlet engine. The prototype
transparently provides an external interaction
contract XIC between the browser and the user,
and a CIC between the browser and the mid-tier
application server. This permits both browser
and mid-tier application to be persistent
components. This should be very relevant for
Internet-based e-services. Building the prototype
required extensions to the IE5 environment in
the form of JavaScript code in dynamic HTML
pages (DHTML), modifications of the source
code of the PHP session management in the
Zend engine [Zend], and modifications of the
ODBC-related PHP functions as well as
additional stored procedures in the underlying
database.

End-to-End Story
A system design based on these prototypes can
provide a user with the exactly-once semantics
that is the Phoenix goal. A user (“external
component”) interacts with an enhanced browser
(a persistent component). The browser in turn
interacts with middle-tier web and application
servers (more persistent components). And
some middle tier persistent components
subsequently interact with “augmented” database
systems (transactional components). All enforce
the appropriate contracts and in a way that is
transparent to the application programmer. The
result is exactly once execution of user requests.

Discussion

Our Phoenix effort is a work in progress. We
expect to continue to work on increasing the
robustness of applications. An important
element of this work will also be to reduce
performance penalty in providing robustness. So
stay tuned! The Phoenix project home page is
http://www.research.microsoft.com/db/phoenix.
This page includes links to references and a
regularly updated view of the project status.

Acknowledgments

We have benefited greatly from collaboration
with exceptional colleagues. Gerhard Weikum
worked with us on persistent applications, both
client/server and multi-tier. German Shegalov,
Gerhard’s student, built the internet persistence

system. Mark Tuttle worked with us on redo
recovery principles. Excellent interns spent
summers (in one case several months) working
with us to build our prototype systems: Sanjay
Agrawal, Thomas Baby, Sirish Chandrasekaran,
Stelios Paparizos, and Haifeng Yu.

References

[BL99] R. Barga, D. Lomet. Phoenix: Making
Applications Robust. (demo paper) SIGMOD Conf.,
Philadelphia, PA (1999)
[BL2000]R. Barga, D. Lomet, T. Baby, S. Agrawal.
Persistent Client-Server Database Sessions, Conf. on
Extending Database Technology, Lake Constance,
Germany (2000)
[BL2001] R. Barga, D. Lomet. Measuring and
Optimizing a System for Persistent Database Sessions.
Int’l Conf. on Data Engineering, Heidelberg,
Germany (2001)
[BLW2001] R. Barga, D. Lomet, G. Weikum.
Recovery Guarantees for Multi-tier Applications. Int’l
Conf. on Data Engineering, San Jose, CA (2002)
[BLSW2002] R. Barga, D. Lomet, G. Shegalov, G.
Weikum. Recovery Guarantees for Internet
Applications. (submitted)
[BHM90] Bernstein, P.A., Hsu, M., Mann, B.:
Implementing Recoverable Requests Using Queues.
SIGMOD Conf., Atlantic City, NJ (1990).
[EJW96] E. Elnozahy, D. Johnson, Y-M Wang, A
Survey of Rollback-Recovery Protocols in Message-
Passing Systems. Tech. Rept, CMU, Pittsburgh, 1996.
[GrRe93] Gray, J., and Reuter, A. Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo, CA (1993).
[Lo98] D. Lomet. Persistent Applications Using
Generalized Redo Recovery. Int’l Conf. on Data
Engineering, Orlando, FL (1998).
[LoTu99] D. Lomet, M. Tuttle. Logical Logging to
Extend Recovery to New Domains. SIGMOD Conf.,
Philadelphia, PA (1999).
[LoTu2002] D. Lomet, M. Tuttle. Principles of Redo
Recovery. (submitted)
[LoWe98] D. Lomet, G. Weikum. Efficient
Transparent Application Recovery in Client-Server
Information Systems, SIGMOD Conf., Seattle, WA
(1998).
[MHLPS92] C.Mohan,et al. ARIES: A transaction
recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM
TODS 17,1 (Mar. 1992)
[Zend] Zend Engine, www.zend.com

