
The Design of a Retrieval Technique

for High-Dimensional Data on Tertiary Storage

Ratko Orlandic�

Dept. of Computer Science

Illinois Institute of Technology

Chicago, IL 60616, U.S.A.

ratko@charlie.cns.iit.edu

Jack Lukaszuk

Dept. of Computer Science

Illinois Institute of Technology

Chicago, IL 60616, U.S.A.

lukajac@iit.edu

Craig Swietlik

DIS Division

Argonne National Lab

Argonne, IL 60439

swietlik@dis.anl.gov

Abstract

In high-energy physics experiments, large particle ac-

celerators produce enormous quantities of data, mea-

sured in hundreds of terabytes or petabytes per year,

which are deposited onto tertiary storage. The exper-

iments are designed to study the collisions of funda-

mental particles, called "events", each of which is rep-

resented as a point in a multi-dimensional universe.

In these environments, the best retrieval performance

can be achieved only if the data is clustered on the ter-

tiary storage by all searchable attributes of the events.

Since the number of these attributes is high, the un-

derlying data-management facility must be able to cope

with extremely large volumes and very high dimension-

alities of data at the same time. The proposed index-

ing technique is designed to facilitate both clustering

and eÆcient retrieval of high-dimensional data on ter-

tiary storage. The structure uses an original space-

partitioning scheme, which has numerous advantages

over other space-partitioning techniques. While the

main objective of the design is to support high-energy

physics experiments, the proposed solution is appropri-

ate for many other scienti�c applications.

Keywords: scienti�c databases, access methods, data

dimensionality, tertiary storage.

1 Introduction

In the High Energy Physics (HEP) experiments de-

signed to study the results of the collisions of funda-

mental particles, the parameters being recorded in the

enormous quantities of data produced by high-energy

particle accelerators are regarded as dimensions in a

multi-dimensional universe. Since the number of these

parameters is high, so is the dimensionality of the re-

sulting space. During the processes of data acquisition

�This author's work was funded in part by the DOE grant

no. DE-FG0295-ER25254.

and reconstruction, the large data sets of these experi-

ments are deposited onto robotic tape systems. In fact,

in this area of scienti�c endeavor, tertiary storage has

recorded so much useful data, whose implications we

have barely begun to understand, that it is unlikely

these storage media will go away any time soon.

Retrieval techniques appropriate for these environ-

ments must deal with a multitude of diÆcult problems:

enormous quantities of data, high data dimensionality,

low-dimensional region queries, and highly skewed data

distribution [15]. Furthermore, since the movement of

data on tertiary storage is severely restricted, the re-

trieval structure must operate with very limited free-

dom. In these situations, a careless pursuit of few pa-

rameters of good retrieval performance without a due

regard for others can easily result in a severe degrada-

tion of the overall performance.

Currently, even the individual aspects of this im-

portant problem represent serious challenges that at-

tract considerable scienti�c interest. For example, it

is well known that the traditional multi-dimensional

access methods [6] do not scale well to higher dimen-

sions. Their performance rapidly deteriorates as the

number of dimensions grows. As a result, they impose

a practical limit on the number of dimensions, which

is typically very low. Numerous structures have been

proposed to address this problem [1, 2, 3, 11, 13, 17].

In contrast, the problem of retrieving high-

dimensional data on tertiary storage has received lit-

tle attention so far. To our knowledge, the structure

proposed in [15] is the only existing retrieval mecha-

nism for these environments. The structure is an es-

sential component of the Storage Access Coordination

System (STACS) developed at the Lawrence Berkeley

Lab to minimize the number of accesses to the tertiary

storage during the analysis of data produced by HEP

experiments [15, 16]. The solution involves a "verti-

cal" partition of data, where each partition represents

a single property (dimension) of data stored in a com-



pact format on a high-speed disk. In addition, it uses

a bit-sliced index, which provides a concise represen-

tation of these partitions in main memory. A region

query, which is �rst processed against the bit-sliced in-

dex, consults only those partitions on the disk that are

partially covered by the query [15].

Despite its appeal, the retrieval technique developed

at LBL has several problems, almost all of which come

from the storage organization assumed in [15]. In that

organization, the chunks of data representing individ-

ual "events" of HEP experiments are stored on ter-

tiary storage in the order these events are generated.

As a consequence of that organization, the index must

grow through periodic reorganizations in response to

append-only updates. The placement of data is in-

compatible with the order in which the data is usu-

ally accessed. Therefore, a typical query must access

numerous �les, and usually only a small fraction of

each retrieved �le is relevant. As a result, the struc-

ture must maintain descriptors of all events stored on

tertiary storage, which requires highly compressed rep-

resentations of data in both memory and disk. This,

in turn, leads to computational complexity and poten-

tially many disk accesses. With that storage organiza-

tion, no indexing scheme can overcome these problems.

When data resides on tertiary storage, the best re-

trieval performance can be achieved only if the data

are clustered on the storage medium by all attributes

on which they are searched. This is necessary to mini-

mize the number of costly accesses to the tertiary stor-

age. In fact, clustering of HEP data is not a new idea.

In the contemporary HEP environments, the \recon-

structed" event data [15] are regularly organized into

physics streams according to which triggers they sat-

isfy [9]. We take this idea even further. The indexing

structure introduced in this paper is a "proactive" en-

tity that facilitates: (1) clustering of high-dimensional

data on tertiary storage; (2) quick and precise estima-

tion of which �les will be accessed by the query; and

(3) eÆcient access to data on tertiary storage.

The proposed solution applies an original space-

partitioning scheme, called � partitioning strategy,

which has numerous advantages over traditional space-

partitioning techniques. Because symmetric partition-

ing strategies require about 2d divisions of the space

(where d is the dimensionality of data) to make sure

that every dimension is partitioned at least once, for

high-dimensional spaces, some form of asymmetric par-

tition is highly appropriate. The � partitioning strat-

egy applies an asymmetric subdivision of the space,

making sure that every axis is partitioned several

times. With this strategy, each dimension can e�ec-

tively contribute to the search process.

2 High-Energy Physics Experiments

HEP experiments are designed to study the physi-

cal laws of nature and test the existing models against

the results of colliding fundamental particles, which are

produced by accelerating particles to very high ener-

gies in large particle accelerators. Beams of protons are

accelerated in opposite directions to nearly the speed

of light, forcing their collisions. Each collision, which

is called an event, produces a large number of addi-

tional particles dispersed in many directions. Events

are typically regarded as collections of sub-events, also

called components, which correspond to di�erent as-

pects of physics. These sub-events include "vertices",

i.e. the positions in space where the particles are split,

and "tracks", i.e. the trajectories of individual parti-

cles produced by the collision.

For each event, up to 10MBs of raw data are col-

lected. Since a typical particle accelerator generates

about 1-10 collisions per second (up to 300 million

events per year), the volume of raw data collected

each year is measured in hundreds of terabytes. The

Large Hadron Collider, which is scheduled to be oper-

ational at CERN in 2005/2006, is expected to gener-

ate several petabytes of data per year. Since storing

terabytes/petabytes of data on disk continues to be

prohibitively expensive, most of the data from such

experiments are organized in �les (usually up to 1GB

each [15]) and deposited onto robotic tape systems. In

these environments, it is the access to the tapes that

dominates the retrieval time.

The collected raw data undergoes a reconstruction

phase, in which each individual event is analyzed to

determine the produced particles and extract its sum-

mary properties, e.g. the total energy of the collision

and the number of particles of each type. Although

the raw data may also be of interest, the analysis is

typically concerned with the reconstructed data. The

volume of the reconstructed data varies, but it can be

as large as the raw data. Thus, the reconstructed event

data are also organized in �les, with about 100-500

events per �le, and placed on tertiary storage [15].

The analysis starts by selecting a relevant subset of

data. In order to sieve out interesting events, the physi-

cist must apply a carefully constructed search predi-

cate that typically involves range speci�cations over a

small subset of event properties. While the events can

have as much as 200 di�erent properties, the number

of properties restricted by the query is much smaller,

typically about 1 to 8. Note that the order of accessing

data is usually independent of the order the events are

generated. Thus, to minimize the number of accesses

to the tertiary storage, it is important to know ahead

of time which �les contain relevant events.



Since the queries usually specify ranges over sev-

eral attributes, these environments require some multi-

dimensional access structure maintained on a high-

speed disk. As noted earlier, the best retrieval perfor-

mance can be achieved if the event data are clustered

on the tertiary storage by all searchable attributes (ef-

fectively, by all properties of the events). Since the

number of these properties is high, the retrieval scheme

must be radically di�erent from the traditional multi-

dimensional access methods. Further complications

in developing such a mechanism arise from the sheer

volume of HEP data, its highly skewed distribution,

and heavily under-speci�ed queries. As if it were not

enough, the movement of data on tapes is so restricted

that one must always assume a write-once situation.

3 Problems of Data Dimensionality

The problems of traditional multi-dimensional ac-

cess structures in high-dimensional spaces can be clas-

si�ed into inherited and acquired disorders. The in-

herited disorders occur in low-dimensional spaces, but

their magnitudes grow with data dimensionality. In

contrast, the acquired disorders typically appear only

in spaces with many dimensions. The main problems

of each group are discussed below.

It is well known that the traditional spatial access

methods [6] su�er from some conceptual aws that

have a tendency to grow with data dimensionality. For

example, in the region-overlapping schemes [7], one of

the central problems is the region overlap. Whenever

a part of the query region falls in the overlap of two

or more index regions, the search must branch into

the corresponding child nodes. The greater the re-

gion overlap, the greater the probability that the search

must visit multiple paths in the index tree. However,

as shown [2], in spaces with more than 4 dimensions,

the amount of region overlap is rather signi�cant even

when the index maintains only point data.

Just as in the HEP studies, multi-dimensional

queries of many applications often restrict only a small

subset of dimensions, leaving the rest of the dimensions

unspeci�ed. The contemporary multi-dimensional ac-

cess methods tend to perform poorly for these par-

tial queries. The problem is more pronounced in high-

dimensional spaces, where the number of speci�ed di-

mensions tends to be small relative to the dimension-

ality of data. Since the traditional multi-dimensional

access methods are generally designed for fully spec-

i�ed queries, few of them can address this important

problem.

Virtually all traditional multi-dimensional access

methods su�er from two types of disorders acquired in

high-dimensional spaces: growing index size and un-

used information. As the number of dimensions (and,

thereby, the size of index entries) increases, the storage

overhead of the index structure grows. Larger struc-

tures lead to a greater number of pages that must be

accessed, which degrades the retrieval performance.

The problem of unused information is a consequence

of the fact that, as the number of dimensions d grows,

the individual axes are split fewer times, thus increas-

ing the extensions of the index regions along the di-

mensions [1, 11]. Beyond a certain dimensionality d0,

where d0 depends on the number and distribution of

objects as well as the capacity of the index nodes [11],

some d�d0 dimensions of the query window do not con-

tribute anything to the search process. This is because

the extensions of the index regions along the d� d0 di-

mensions completely cover the corresponding sides of

the universe.

Most of these problems are due to the space-

partitioning strategies applied by the contemporary

multi-dimensional structures. For example, the par-

titioning strategy based on non-overlapping index re-

gions [12] results in unused information. So does

the partitioning strategy into overlapping regions [7],

which also leads to an excessively large region overlap.

The strategy of partitioning the space into pyramid-

shape regions, as in the Pyramid Technique [1], does

not lend itself well to partially-speci�ed queries. In

addition, the technique is completely ine�ective in sit-

uations when points fall on or near the boundary of

the multi-dimensional space.

4 � Partitioning Strategy

The basis for our solution to the problem of access-

ing terabytes of high-dimensional data on tertiary stor-

age is an original partitioning scheme, called � parti-

tioning strategy. Figure 1 illustrates a � partition of a

3-dimensional space.

In general, a d-dimensional universe is statically par-

titioned by several nested hyper-rectangles (NHRs),

which we also call partition generators or just genera-

tors. Except for the outermost generator, which corre-

sponds to the entire universe, every NHR in this space

is enclosed by another generating hyper-rectangle. The

number and the coordinates of the generators must be

selected by the administrator. The space in one gen-

erator (outer NHR) outside the immediately enclosed

generator (inner NHR) represents one � subspace.

As illustrated in Figure 1, except for the innermost

subspace, each � subspace is further divided into d

rectangular regions, called � regions, by means of d�1

hyper-planes, each lying on an outer side of its inner

NHR. With m generators, there are exactly 1 + (m �

1) � d di�erent � regions in the space. Given a set of



Gamma subspaces

Rectangular Gamma regions

Slices of a
Gamma
region

Figure 1: � partition of a 3-dimensional space.

generators, the coordinates of each � region can be

calculated using a simple algorithm. Every � region

can be further partitioned along di�erent dimensions

into, possibly, several � slices. The slicing of a � region

is also illustrated in Figure 1.

The � partition of space is highly con�gurable and

can be tuned to �t the triggers according to which the

events are usually classi�ed by the physicists. At the

same time, the strategy does not incur the problem

of region overlap. The asymmetric subdivision of the

space makes sure that every axis is partitioned sev-

eral times. Therefore, each dimension of the space

can e�ectively contribute to the search process, which

avoids the problem of unused information. Just like

the Pyramid Technique, this strategy avoids another

serious problem discussed in [1], which is associated

with those structures that strive to partition the space

symmetrically (e.g., KDB-trees and R-trees). The

problem is that, in the later schemes, a small region

query positioned somewhere in the middle of the high-

dimensional universe may overlap all index regions. If

so, the search procedure must traverse the entire multi-

dimensional index.

Even though there are some similarities between the

� partitioning strategy and the Pyramid Technique,

the � partition o�ers some signi�cant advantages over

the later scheme. Since the number and coordinates of

NHRs are independent of data dimensionality and can

be selected to �t the actual distribution of data, the

� partitioning strategy is much more exible than the

Pyramid Technique. Because � slices have rectangular

shape, the calculations required to identify the slices

that must be searched are much simpler. Unlike the

Pyramid Technique, the � strategy is e�ective even in

situations when objects lie on or near the boundary of

the multi-dimensional universe.

Another important advantage of the � space parti-

tion is that it is more appropriate for partially-speci�ed

queries than the Pyramid Technique. With the ap-

propriately con�gured � space partition, a larger frac-

tion of the search space is likely to be eliminated from

inspection. To verify this, we implemented both the

Pyramid Technique and an access structure, which

we call �s Technique, and performed an experiment

to compare their performance for partially speci�ed

queries. The Pyramid Technique was implemented ac-

corded to the description provided in [1]. The imple-

mentation of �s was di�erent only to the extent that

it employed the � space partition rather than the par-

tition into pyramid-shaped regions.

Just like the Pyramid Technique, �s has two distinct

layers. The upper layer, which statically partitions the

d-dimensional space into � regions and slices, is used

to map the multi-dimensional points and queries onto

their one-dimensional counterparts. The lower layer

organizes the resulting one-dimensional index keys into

a traditional B+-tree index [4], which is searched using

the one-dimensional intervals generated by the query

transformation.

In the �s Technique, the points of every � slice are

projected onto the longest side of the slice, called the

projection axis. The position of the point in the linear

space is determined by the unique number of the � slice

containing the point and the value of the point on the

projection axis. The two numbers form an index key,

called � value, which is inserted into the B+-tree along

with the original multi-dimensional point. Implicitly,

the index partitions every slice along the projection

axis into possibly several segments, each of which cor-

responds to a leaf page of the underlying B+-tree. The

search procedure must �rst determine the � slices that

overlap the query window. For each such slice, the in-

terval of the query window that overlaps the slice along

its projection axis is used to search the underlying B+-

tree, with the low and high endpoint of the interval

serving as the fetch and stop point, respectively.

For the purposes of the experiment, the � partition

was generated by four NHRs that induced � regions of

approximately equal size. In each d-dimensional space,

every � region was further partitioned into six slices of

the same size. In both the Pyramid and the �s Tech-

nique, the number of dimensions was varied between

2 and 50. In every structure, we set the page size to

2K bytes and inserted in it exactly 100,000 uniformly

distributed points. Every coordinate of a point was

represented as a 4-byte integer. The experiments were



conducted for four types of randomly generated par-

tial queries with only a) one, b) two, c) four or d)

eight speci�ed dimensions. For each type of query, the

performance of the structures was measured as the av-

erage number of page accesses per query. To avoid

extremely large queries relative to the universe, each

speci�ed side of a query was restricted to at most 10%

of the corresponding side of the universe.

0

10

20

30

40

50

60

70

80

90

100

2 4 8 12 16 20 24 28 32 36 40 44 48

Number of Dimensions

P
er

ce
n

ta
g

e
Im

p
ro

ve
m

en
t

Q1 Q2 Q4 Q8

Figure 2: Performance improvements of �s over the

Pyramid Technique for partial queries with one, two,

four or eight speci�ed dimensions.

Figure 2 shows the percentage improvements of �s

over the Pyramid Technique for di�erent types of par-

tial queries as data dimensionality grows from 2 to

50. For each type of query in every d-dimensional

space, the improvement was calculated as 100 � (P (d)�

G(d))=P (d), where P (d) and G(d) were the total page

accesses for 1,000 random queries of the given type

generated by the Pyramid Technique and the corre-

sponding �s Technique, respectively.

Obviously, �s outperformed the Pyramid Technique

through the entire range of data spaces. With more

dimensions speci�ed by the queries, the performance

improvements increased. For each type of queries,

the peak improvement was observed in or near the

data space whose dimensionality matches the dimen-

sionality of queries. Although the di�erence in the

actual page accesses generated by the two structures

grew with data dimensionality, the percentage im-

provements diminished. This is because, as the num-

ber of those dimensions that are not restricted by the

queries increases, both structures generate more page

accesses, which reduces the percentage improvement.

5 Basic �t Solution

While the �s Technique is appropriate for accessing

high-dimensional data on secondary storage, a di�er-

ent solution is required when data resides on tertiary

storage. Figure 3 illustrates the actual design of our

retrieval scheme for high-dimensional data on tertiary

storage, which we call �t Solution. In order to address

the problems of contemporary retrieval structures in

high-dimensional situations, the mechanism uses the

� strategy of partitioning the space. It also employs

a complex set of measures intended to cope with the

enormous quantities, highly skewed distribution, and

the write-once nature of data on tertiary storage. The

mechanism coordinates its operation with a high-speed

cache of the most relevant �les, which is not illustrated

in the �gure.

…

main memory high-speed disk

B+-tree

…
…

…

…
Gamma
regions

Gamma
slices

list of files

compact file descriptor

…
slice
ID

file
ID

index
entry

live
regions

Figure 3: The design of the �t solution.

The �t Solution uses two sets of structures, one re-

siding in main memory and the other on the disk. The

�rst set consists of a two-level tree structure that stat-

ically partitions the space into � regions (�rst level)

and slices (second level) as well as a list of �les on ter-

tiary storage grouped according to the � slices they

belong to. Along with each � region, the structure

dynamically maintains the minimum bounding hyper-

rectangle enclosing all points that fall in the region.

We call this live � region. Note that, even though the

live � regions can be dynamically extended, due to the

static nature of data on tertiary storage, the � slices

must be statically de�ned. This is why the slicing is

performed on the original � regions, and not on their

live portions. However, the live region of any given �

slice can be computed by intersecting the slice with the



live fraction of its parent � region.

The live � regions are used to eliminate from inspec-

tion potentially signi�cant amount of dead space (space

without any data item), and thereby avoid some un-

necessary disk and �le accesses. The dead space is due

to the highly skewed distribution of HEP data, which

frequently have missing and/or undetermined values.

As a result, most data items fall on the boundaries of

the space. For highest precision of multi-dimensional

selections, the structure could maintain a live region

per each individual � slice. However, with aggressive

slicing of the � regions, this could lead to an excessive

memory overhead.

On the high-speed disk, the scheme maintains a B+-

tree whose leaf entries contain compact �le descriptors,

each describing the contents of a single �le on the ter-

tiary storage. Since a data �le contains events that be-

long to the same � slice, in addition to the �le descrip-

tor, every index entry at the leaf level of the B+-tree

must include the unique number of the corresponding

� slice and the �le ID. To facilitate fast location of the

descriptors of all �les belonging to a single slice with

as few disk accesses as possible, the index entries are

ordered on the � slice number and the �le ID. The two

values form an index key for the B+-tree.

Each �le descriptor in the B+-tree is a concise rep-

resentation of the events (i.e., the event properties)

stored in that �le. As in the retrieval scheme pre-

sented in [15], the individual properties are divided into

a small number of bins (e.g., 8 or 16 bins). Then each

event is assigned a bit vector, with one bit per every

bin. In this vector, "1" indicates that the value of the

event's property falls in that bin, and "0" that it does

not. A �le descriptor is obtained by performing logi-

cal "or" on the bit vectors corresponding to the events

stored in that �le. Further compression of the �le de-

scriptors can be obtained by retaining only the bins

that fall within or intersect the corresponding � slice.

When a new event is created, the scheme must �rst

traverse the main-memory structures in order to lo-

cate the �le where the event belongs. Since the events

of the same slice are stored in �les in the order these

events are generated, only one ("current") �le per each

slice receives the new injections. To speed up the in-

sertions, it is appropriate to keep the current �le of

each slice in the high-speed cache. Whenever the size

of a current �le exceeds a certain threshold, the �le is

written to a tape, a new current �le is created, and

its (initially empty) descriptor is inserted into the B+-

tree. Each time a new event is appended to a �le, the

corresponding �le descriptor is consulted and, if neces-

sary, updated to incorporate the description of the new

event. Accordingly, the corresponding live � region in

main memory may have to be extended to include the

new event.

The search procedure starts by identifying the slices

that overlap the query window and the list of their cor-

responding �les. If a live portion of a � slice is com-

pletely covered by the query, all events that fall in that

slice satisfy the query and, thereby, all �les correspond-

ing to that slice must be retrieved from tertiary stor-

age. The �le descriptors on the disk must be examined

only for slices whose live portions are partially covered

by the query. For each such slice, the B+-tree index

is searched using the given slice number in order to lo-

cate the corresponding �le descriptors. These compact

�le descriptors are consulted to determine which �les

of the corresponding slice, if any, must be retrieved.

The �t Solution has numerous advantages over the

retrieval scheme proposed in [15]. First, since the

events are clustered on tertiary storage by all at-

tributes, fewer �les have to be accessed and a larger

fraction of each accessed �le satis�es the query. This

reduces the number of accesses to the tertiary storage,

which enables a signi�cantly improved search perfor-

mance. Second, since both the disk and main-memory

structures maintain only information about �les, not

the individual events, the storage overhead of the struc-

tures is signi�cantly reduced (up to two orders of mag-

nitude). Third, because the need for elaborate data

compression is eliminated, the scheme does not require

expensive computations and potentially many disk ac-

cesses to "parse" the compressed data and compare

them with the search criteria. In addition, the � parti-

tioning strategy is fully compatible with the properties

of data and queries in these extreme environments.

Since the retrieval technique proposed in [15] ex-

plicitly maintains the information about all individual

events, it can support relevance ranking of �les before

they are accessed. This information can be used to

coordinate pre-fetching of �les when several analyti-

cal tasks are executed simultaneously. The �t Solution

can support this task even though the retrieval struc-

ture does not keep information about individual events.

From the point of view of a typical query, the events

within a � slice are randomly distributed across the

corresponding �les. Therefore, the degree of overlap

between the query window and the live region of the

given slice can provide a good estimate of how relevant

is a �le that needs to be accessed.

For even greater accuracy of the structure, the B+-

tree index could maintain several compact descriptors

per data �le, each corresponding to a subset of events

stored in that �le. With this, the scheme could reduce

certain false matches that may occur as a result of

unioning the descriptors of all events in the �le.



6 Discussion and Future Work

In order to meet the challenges posed by advanced

scienti�c applications, the international research com-

munity has established a project called \Research and

Technological Development for an International Data

Grid" [8]. If successful, the project will enable eÆcient

access to the enormous quantities of scienti�c data on

hierarchical storage and, thereby, better understand-

ing of problems critical for our future, which include

energy, environment and the structure of life [5, 14].

Since the solution to the problem of accessing large

volumes of high-dimensional data on tertiary storage

proposed in this paper is highly appropriate for the

Data Grid architecture [8], the technique could provide

a valuable contribution to the international Data Grid

project. While the main goal of the design is to sup-

port high-energy physics experiments, the �t Solution

is appropriate for many other scienti�c applications,

including terrestrial and oceanic observations as well

as genome and protein studies.

One can easily envision several variants of the �t

Solution, each appropriate in di�erent situations. The

version presented in this paper is directly applicable

in the HEP environments described in [15], where all

data of an event are stored in a single �le. However,

since typical analytical tasks deal with few sub-events

at any given time, in the more recent practices, the re-

constructed data of each event are organized into com-

ponents that are stored in separate �les [16]. A simple

modi�cation of the �t Solution can accommodate these

environments as well.

Our future work in this area will pursue two pri-

mary objectives: (1) demonstrate that the � partition-

ing strategy provides a superior way of organizing and

accessing data in high-dimensional spaces; and (2) de-

velop the �t Solution at the Argonne National Lab and

establish a scienti�c basis for con�dence in the scheme

using the actual data of high-energy physics experi-

ments. We also plan to investigate the application of

the � partitioning strategy in the context of identifying

tight clusters in a large quantity of high-dimensional

scienti�c data [10].

References

[1] S. Berchtold, C. Bohm and H.P. Kriegel, \The
Pyramid-Technique: Towards Breaking the Curse of
Dimensionality," Proc. ACM SIGMOD Int. Conf. on

Management of Data, 142{153, 1998.

[2] S. Berchtold, D.A. Keim and H.P. Kriegel, \The X-
tree: An Index Structure for High-Dimensional Data,"
Proc. 22nd Int. VLDB Conf., 28{39, 1996.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan and

U. Shaft, \When Is 'Nearest Neighbor' Meaningful?"
Proc. 7th Int. Conf. on DB Theory, 217{235, 1999.

[4] D. Comer, \The Ubiquitous B-tree," ACM Comp.

Surveys, 11(2):121{137, 1979.

[5] I. Foster and C. Kesselman, The Grid: Blueprint for

a New Computing Infrastucture, Chapter 5, \Data-
Intensive Computing," Morgan Kaufmann, 1999.

[6] V. Gaede and O. Gunther, \Multidimensional Access
Methods," ACM Comp. Surveys, 30(2):170{231, 1998.

[7] A. Guttman, \R-trees: A Dynamic Index Struc-
ture for Spatial Searching," Proc. ACM SIGMOD Int.

Conf. on Management of Data, 47{54, 1984.

[8] W. Hoschek, J. Jaen-Martinez, A. Samar,
H. Stockinger and K. Stockinger, \Data Management
in an International Data Grid Project," Proc. 1st

IEEE/ACM Int. Workshop on Grid Computing, 2000.

[9] D. Malon, Argonne National Laboratory, 2001 (pri-
vate communication).

[10] E.J. Otoo, A. Shoshani and S. Hwang, \Clustering
High Dimensional Massive Scienti�c Datasets," Proc.

13th Int. Conf. on Scienti�c and Statistical Database

Management SSDBM'01, 147{157, 2001.

[11] R. Orlandic and B. Yu, \Implementing KDB-
Trees to Support High-Dimensional Data," Proc. Int.

Database Engineering and Applications Symposium

IDEAS'2001, 58{67, 2001.

[12] J.T. Robinson, \The K-D-B Tree: A Search Struc-
ture for Large Multidimensional Dynamic Indexes,"
Proc. ACM SIGMOD Int. Conf. on Management of

Data, 10{18, 1981.

[13] Y. Sakurai, M. Yoshikawa, S. Uemura and H. Ko-
jima, \The A-tree: An Index Structure for High-
Dimensional Spaces Using Relative Approximation,"
Proc. 26th Int. VLDB Conf., 516{526, 2000.

[14] J. Shiers, \Building a Multi-Petabyte Database:
The RD45 Project at CERN," in M.E.S. Loomis and
A.B. Chaudri, editors, Object Databases in Practice,
164{176, Prentice Hall, 1997.

[15] A. Shoshani, L.M. Bernardo, H. Nordberg, D. Rotem
and A. Sim, \Multidimensional Indexing and Query
Coordination for Tertiary Storage Management,"
Proc. 11th Int. Conf. on Scienti�c and Statistical

Database Management SSDBM'99, 214{225, 1999.

[16] A. Shoshani, A. Sim, L.M. Bernardo and H. Nord-
berg, \Coordinating Simultaneous Caching of File
Bundles from Tertiary Storage," Proc. 12th Int. Conf.

on Scienti�c and Statistical Database Management SS-

DBM'2000, 196{206, 2000.

[17] R. Weber, H.-J. Schek and S. Blott, "A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces," Proc. 24th Int.
VLDB Conf., 194{205, 1998.


