Bringing Order to Query Optimization

Giedrius Slivinskas Christian S. Jensgn Richard T. Snodgrass

T Department of Computer Science, Aalborg University, Denmark
1 Department of Computer Science, University of Arizona, USA

Abstract has also led to proposals for exploiting order. Specifically,
it is desirable to compute the results of a search in an or-
A variety of developments combine to highlight the neeglered, page-by-page fashion. This often affords fast com-
for respecting order when manipulating relations. For eyutation of the first results and often avoids computation
ample, new functionality is being added to SQL to suwf the entire results.
port OLAP-style querying in which order is frequently an peyelopments such as these have led to additions to
important aspect. The set- or multiset-based frameworés)) For example, Microsoft's SQL Server [Mic] offers
for query optimization that are currently being taught t9 Top v clause that, when specified with an integer ar-
database students are increasingly inadequate. gumentN in the SELECT clause of a query, limits the
This paper presents a foundation for query optimizgymper of tuples returned by the query to at most N.
tion that extends existing frameworks to also capture Qfghen used in conjunction with the ORDER BY clause,
dering. A list-based relational algebra is provided alonge first N tuples of the result according to the speci-
with three progressively stronger types of algebraic €quilfag order are returned. The Oracle DBMS enables TOP
alences, concrete query transformation rules that obey R€gyeries by providing a pseudo-colurROWNUMat
different equivalences, and a procedure for determini@gsignS rank values to rows according to a given OR-
which types of transformation rules are applicable for opyer BY clause [OraDev]. IBM's DB2 supports the
timizing a query. The exposition follows the style chog|5uses “FETCH FIRSTV ROWS ONLY” and “OPTI-
sen by many textbooks, making it relatively easy to teagflze FOR N ROWS™: the first returns the firsy rows,

this material in continuation of the material covered in thgpile the second asks the optimizer to deliver the fist
textbooks, and to integrate this material into the textbookgyys faster than the rest [IBM].

Whether to allow duplicates in query results, or to insist
1 Introduction on relations indeed being sets, has generated much discus-
sion. Informed scientists and practitioners have conducted

The relational model was originally conceived as a sdi€ated debates on this topic in trade magazines (not un-
based model—relations were sets of tuples. Over tjike in nature to the debates on null values!). This debate

past three decades, this property has been proclaimeg Peen resolved in the sense that $iQesallow dupli-

strength as well as a shortcoming of the relational mod&@tes: and query optimization framewotiaveemerged

As a reflection of this controversy, the user-level reldhat consider relations as multisets and thus afford a sys-
tional query language of choice, SQL, has long offerd§Matic treatment of duplicates.
a peculiar mix of orderedness and unorderedness. To ilHowever, SQL remains mainly a set-oriented (or
lustrate, an ORDER BY clause permits to sorting of thaultiset-oriented!) language, with order being an add-
tuples resulting from query based on any combination 80- This is perhaps the reason why the handling of or-
their attributes, using ascending and descending ord@r in query optimization is also in some sense an add-on.
ings. However, this clause is far from a first class citiz€@uery optimization frameworks formalize relations as ei-
in SQL. Rather, this clause is an add-on that may be ug8@r sets or multisets, making it difficult to capture, and
only at the outermost level of a query, for ordering the réormally reason about, order.
sult. For example, it is impossible to create a view that We believe that, like duplicates, order should be af-
includes the ORDER BY clause. forded fully integrated treatment in query optimization.

With the more recent advent of on-line analytical proFhe reasons are several. First, order is inherent to the
cessing, the ordering of query results had gained new hysical representation of data—order thus occurs at the
terest and prominence. For example, orderedrtdists bottom of query plans, which may be exploited to produce
are often of interest in OLAP-style querying. Web seardbetter query plans. Second, systematic, unconstrained

reasoning about order throughout query plans, e.g., whiemportant.
the queries involve TOP-N like clauses, may lead to betterCarey and Kossmann [CK97] discuss how to efficiently
plans. process TOPN and BOTTOM N queries by extend-
This paper offers a foundation for relational query opting existing relational query processing architectures, and
mization that offers comprehensive, sound, and integratiébety propose a number of possible optimizations for such
coverage of duplicates and ordering. The foundation dguieries. These optimizations fit into this paper’s founda-
enabled by a relational algebra on relations that are din as specific transformation rules.
fined as lists and thus can be equivalent as sets, multiset®ur earlier work [SJS01] presented a foundation
or lists. These types of eyalences come into play be-for temporal query optimization including conventional
cause queries specify different types of results. For exaguery optimization that covered duplicates and order, as
ple, an SQL query not including ORDER BY and DISwell as different types of transformation rules. All def-
TINCT at the outermost level specifies a result of typaitions omitted from this paper are included in that pa-
multiset, thus rendering the application of transformatioqeer, which also covers some additional related work.
that need not preserve list equivalence. The present paper considers only conventional query op-
The paper provides transformation rules that satisfy thienization, adds the TORV operation and consequent
different equivalences and go beyond the existing setstadnsformation rules, and makes the argument that ordered
rules known to the authors. In addition, a practical preelations should be treated systematically in query opti-
cedure is offered for determining when a type of transfomizers and textbooks.
mation rule is applicable to a query. Section 2 proceeds to define the extended relational al-
Some work has been reported on relational algebras f@bra. The different types of algebraic equivalences are
multisets [AIb91, DGK82, GUWOO0], with the most re-described in Section 3, and the concrete transformation
cent of these, by Garcia-Moalina et al., being also the mastles that obey these are provided in Section 4. Section 5
extensive. This book offers comprehensive coverage @if’es a procedure for determining when a transformation
guery transformations that preserve set as well as multisge is applicable, and Section 6 concludes the paper.
equivalences. Formalizing relations as multisets, sorting
is permitted only at the outermost level. However, pushi
down sorting in a query plan can improve performancrﬁ An Extended Algebra
Moreover, in some cases, the sortimgistbe performed
early in the query evaluation. For example, DBMSs suck? formally capture duplicates and ordering, the algebra
as Microsoft SQL Server allow the ORDER BY clause if? be defined must be based on relations that are lists. Be-
combination with the TOP predicate in subqueries, thGguse it is also necessary to treat relations as sets or mul-
requiring intermediate results to be sorted. tisets, the sgmantics qf the algebra operations must follow
Recent work by Pirahesh et al. [PLH97] emphasiz&d€ conventional relational algebra.
the importance of considering duplicates in DB2's query It is also desirable that the operations be minimal and
rewrite rules. However, duplicates are addressed as spghiogonal—each operation should perform one single
cial cases when defining rewrite rules, and no form nction and should minimally affect its argument(s) in
foundation for reasoning about these is offered. Que%g)ing s0. This way, replication of functionality is avoided,
optimizers such as Volcano [GMc93] initially generaté”d it is easier to combine operations in queries. Combi-
search spaces of query plans without considering ord8ations of operations, termégioms may be included for
ing, then take order into account when considering tigdficiency, but should be identified as idioms.
specific operator algorithms to use when transforming aWe proceed to define the algebra, then exemplify the
(logical) query plan into a concrete plan that may be exalgebra and discuss pertinent properties.
cuted by the query processor.
Some research has been conducted on algebraic fra®egt Database Structures
works for queries on lists. Richardson [Ric92] uses an
approach based on temporal logic to incorporate lists inf§e define relation schemas, tuples, and relation schema
an object-oriented data model. Seshadri et al. [SLRIAStances in turn. The definitions are the standard ones,
SLR95] propose a sequence data model and optimizati# adapted to address duplicates and order.
techniques for sequence queries; while the model is rela-
tionally complete, the focus is on the processing of opafefinition 2.1 A relation schemas a four-tupleS =
ators specific to sequence data such as time series. @QUIA dom, K), whereQ is a finite set of attributes
work aims to simplify and minimize the extensions to thg z finite set of domainsiom : Q — A is a function that

conventional relational algebra, as well as permit the tregksociates a domain with each attribute, &his a set of
ment of relations as multisets or sets, when order is n@lis of attributes frorf. 0

Consider relationPAYMENT in Figure 1. Relation empty relation byl), the operation returns it. Other-
schemaPAYMENT consists of the attributeBmpID and wise, the second line is processed, which says that if
Salary and is formally a four-tuple(Q2, A, dom, K), contains only one tuple (the remaining part of the rela-

where Q@ = {EmpID,Salary}, A = {number}, tion, tail(r), is empty), we test the predicafe on the
dom = {(EmpID,number),(Salary,number)}, and firsttuple Gead(r)). If the predicate holds, the operation
K = {{EmpID}}; K is essentially a set of keys for thereturns the tuple; otherwise, it returns an empty relation.
schema. If the second-line condition does not hold, the operation
returns the first tuple or an empty relation (depending on
PAYMENT the predicate), with the result of the operation applied to
EmpID | Salary the remaining part of appended@).
; égﬁK The standarc_i auxiliary functiorigad, tail, @_, _and tu-
ple concatenatiornj—as well as the other auxiliary func-
3 130K . .
2 110K tions used below—are defined elsewhere [SJS99].
5 110K Projection In the projection operation : [R x F X...x
F] = R, Fis a set of arithmetic expressiofis: 7 — T,
Figure 1: RelatiorPAYMENT which includes any possible attribute names and which

return single-attribute tuples. For tIRAYMENT relation,
one possible expressigf is 2 - Salary AS X. Functions

Definition 2.2 A tuple over schem& = (2, A, dom, K) 1. are expressed as a subscript, g, . ;. ()
9 J M ? 1%)n "

is a functiont : 2 — Usead, such that for every attributefl’ e
AofQ,t(A) € dom(A). Arelation schemainstance over
S is a finite sequence of tuples ovsrsuch that for any 7 = AT fioos fa (r =1) =,

tuplest, , ¢, and for any set of attributelsd;, ..., 4, } in fi(head(Ly))o...o fn(head(L1))

K, t1(Ay) #ta(A) V...V (Ay) # ta(Ay). O Qp,.p, (bail(r))

Note that the definition of a relation schema instance (rehe schema of the result relation follows from the defini-
lation, for short) corresponds to the definition of a listion of tuple concatenation.
A relation can thus contain duplicate tuples, and the or-\e also define a foreign key below (for simplicity, for-

dering of the tUpleS is Significant. THEAYMENT rela- eign keys are defined at the instance |eve|).
tion from Figure 1 is then the list 1, 2, 3, t4, t5), Where

¢, = {(EmpID, 1), (Salary, 100K)} and tupleg,—t; cor- Definition 2.3 A set of attributes{4,,..., A,} of rela-

respond to the other tuples of the figure. tion schema instaneg constitute doreign key of relation
schema instance with respectto akeyB,,..., B, } of
relation schemainstance ifandonly ifra, . 4, (r1) C

2.2 Algebra Operations

TBy,....Bn (T2). o
We proceed to define the algebra operations. In the defi-

nitions, we us&" to be the set of all tuples of any schem&Nion-all Operatiort : [R x R] — R returns the union
andR to be the set of all relations, and lete R,r = of two argument relationgetaining duplicates The op-
(t1,ts t.). We use)-calculus for the definitions. eration appends the second relation to the first one.

The definitions do not imply actual implementation algo-

rithms. The schema of the result relation is the same as thé! = Ar1,r2.(r1 =1) = r2, _
schema of the argument relation unless noted otherwise. head(r1) @ (tail(r1) Urs)

Selection The selection operation : [R x P] — R))

corresponds to the well-known selection operation in ttfeartesian Product Operationx : [R x R] — R com-

relational algebra [GUWO00]. The argument predic&te Putes the Cartesian product of two argument relations in
from the set of all possible selection predicafess ex- nested loop fashion. The definition uses the auxiliary

pressed as a subscript, i€p(r). function Loop : [T x R] — R*". The schemas result-
ing from x and Loop follow from the definition of tuple
o2\, P(r=1)>r, concatenation.

(tail(r) =L1) — (P(head(r)) — head(r), L),
(P(head(r)) — head(r), L) @ op(tail(r)) X £ Ary, 1o ((r =1) V (ry =1)) =1,
Loop(head(r1),r2) U (tail(r1) X r2)
The arguments of an operation are given before the dot,
and the definition is given after the dot. In this defini- Loop £ M, r.(r =1) -1,
tion, the first line says that if is empty (we denote an (t o head(r)) @ Loop(t, tail(r))

Informally, nested-loop join is a nested-loop Cartesiarhe definition uses the auxiliary functioWetGroup,

product followed by a selection involving attributes fronwhich returns all tuples from the argument relation that
both arguments of the Cartesian product, and, possiliyave grouping-attribute values equal to those of the argu-
followed by a projection. ment tuple. If there are no grouping attributes, the func-

Difference Operation\ : [R x R] — R returns all tuples tion returns a list with all tuples of the relation.
of the first argument relation that are not in the secor&brting Operationsort : [R x Ogq] = R sorts the argu-

argument relation. ment relation. We denote the set of all possible orders for
attributes fronf2 by Oq. The list((4, ASC), (B, DESC)) is
\ &2 Ar;,ro.((ry =L) V (ry =1)) = 71, an example of an order. First, we define auxiliary function
isIn(head(ry),ry) — InsertTuple : [T x R x Oq] — R, which inserts a tuple
(tail(r1) \ remove(head(r1),72)), into a sorted argument relation, maintaining its order. We
head(r1) @ (tail(ry) \ r2) denote the argument order by

FunctionisIn returns True if the argument tuple exists in Insert Tuple = Xt,r,a.(r =1) — (t),

the argument relation, and functiegmove removes the MustPrecede(t, head(r),a) -t Qr,

first occurrence of the argument tuple from the argument head(r) @ Insert Tuple(t, tail(r), a)

relation.

Function MustPrecede returns True if the first argument

moves duplicates from the araument relation. This o ertu_ple precedes the second argument tuple according to the
. up : 9 ' PEI& qument order. Functiosort invokes Insert Tuple for
tion retains the first occurrence of each tuple and remo

; V&ach of its tuples.
all subsequent occurrences, if any.

Duplicate Elimination Operationrdup : R — R re-

sort 2 Ar,a.(r =1) =1,

A
TdUP = Ar(r=1) - Insert Tuple(head(r), sort(tail(r)), a)
isIn(head (1), tail(r)) —

rdup(head(r) @ remove(head(r), tail(r))),

head (r)@rdup tail (1)) Top Operationtop : [R x N] — R returns the first

tuples of the argument relation, whetebelongs to a set

. . .of natural numbersy'.
If the first tuple of the argument relation can be found |R atural numbers)’

the remaining part of the relation, the operation removes
that found tuple. Otherwise, the operation returns the first
tuple concatenated with the result of the operation applied
to the remaining part of the relation.

Aggregation Operation¢ : [R x © x ... x Q x F x 2.3 Example Query

. x F] — R performs aggregation according to givef,ying defined these operations, we exemplify their use
grouping attributes and aggregation functions. The setigfqyery plans, as well as indicate what kinds of transfor-

attributes in the schema of the argument relations is d@ztions may be applied during optimization.
noted by(2, and the set of all aggregation functions is de- | ot s consider two relationAYMENT (recall Fig-

noted bylF, an aggregate functiof; : R — 7 takes o 1) andEMPLOYEE (see Figure 2), and a query which

a relation as argument and returns a single-attribute tuplg.s ‘o |ist all employees (their IDs and names) with

containing the aggregate value. An example of an a99&yaries that are among the top three highest salaries in

gate function ',gwc(salary) ASD. . the company, and requires the result to be sorted on the
The operation returns one tuple for each unique S€a1ary attribute in descending order. Note that the re-

quence of grouping attributes. The schema of the resyffi; (given in Figure 2) contains more than three tuples,
relation follows from the definition of concatenation. OUpecause several employees get the same salary.

definition corresponds to that provided by Klug [KIu82]

top EAr,n.(r=LVn=0)—1,
head(r) Q top,,_,(tail(r))

and Garcia-Molina et al. [GUWOO]. EMPLOYEE Result
EmpID | Name EmpID | Name Salary
fé)\r,gl,...,gn,Fl,...,Fm.(r =1)—>r, 1 John 3 Peter 130K
(head(r).g1 o ... o head(r).g, 2 Tom 4 Anna 110K
o Fi(GetGroup,, . (r,head(r)))o... i ieter i ?u;anne 138&
o Fy(GetGroup,, . (r,head(r)))) = Szggnne onhn

Q&g gn.Fr, Fo (T
\ GetGroup,, . (r,head(r))) Figure 2: RelatiorEMPLOYEE and the Result Relation

Order needs not be preserved Duplicates are not relevant

S(‘)rtSaI ary DESC TEan D, Nane, Salary
M empiD, Nare, sal o
‘ mpl b, e, ary ‘1.EerID:2.EerID
‘01. Enpl D = 2. Enpl D X
X o EMPLOYEE
‘ 1.Salary = 2.Salary
EMPLOYEE 01. Salary = 2. Sal ary ><
X top, PAYMENT
PAYNENT t(‘)pa Sortsm ary DESC
g)rtSaI ary DESC
\ rdup
rdup
‘ Tlsg) ar y
T[Sal ary
‘ PAYNMENT
PAYNMENT
(@ (b)

Figure 3: Initial Query Plan (a) and Resulting Query Plan (b)

Figure 3(a) shows one possible initial query plan. Firsg thePAYMENT relation projected on the top three salaries.
the PAYMENT relation is projected on itSalary attribute, Since the Cartesian product is defined in nested-loop fash-
then duplicates are removed, and the top three salariesiarg the order of its left argument is preserved, and, con-
selected. The Cartesian product and the subsequentssgtuently, the toport operation is no longer necessary.
lection then find the IDs of all employees that receive a Note that therdup, sort, andtop operations do not
top three salary, and another Cartesian product with a b@ve to be separate operations. Since they could be ef-
lection is performed on the result and #PLOYEE rela- ficiently implemented using a priority heap in main mem-
tion in order to obtain the employees’ names. Finally, thary, an idiom involving the three operations may be de-
result is projected on required attributes (for brevity, witned and used in query-plan generation.
do not specify from which relation the common attribute§ 4 O ion P .
come) and sorted on tf8alary attribute.) peration Properties

Transformation rules that preserve different types &fection 2.2 defined only fundamental operations. The ad-
equivalences are applicable to different parts of a quedition of derived operations (idioms), e.g., join (Cartesian
This is illustrated by the regions in Figure 3(a). Transfoproduct followed by selection and projection) and regular
mations below the toport operation and above thep SQL union (union-all followed by duplicate elimination),
operation need not preserve order (indicated by the lightgould not introduce any new issues in the framework.
shading). The toport operation ensures that the result islowever, idioms should be included in an implementa-
correctly ordered. Transformations performed below thin of the algebra.
rdup operation need not preserve duplicates, which is in- The algebra differs fundamentally from the algebra pre-
dicated by the darker shading. sented in [GUWAOQ], in that this latter algebra works on

By systematically exploiting transformation rules premultisets, not lists. However, all our operations except
serving different types of equivalences, we are able top are list-insensitive, i.e., if their argument relations are
achieve an “optimized” query tree such as the one shovdentical as multisets (but different as lists), their result
in Figure 3(b). In this tree, the orders of the Cartesiaelations are also identical as multisets. When we treat
products have been switched, so that the left-most relatietations as multisets, our algebra is at least as expressive

as the one presented in [GUWO00] because each operati@ap = Ary,rs.(r; =L A1y =1) — True,

defined there may be expressed by combinations of the (r; =L ®r, =1) — False

first seven operations defined in Section 2.2. (head(r1) = head(r2)) — tail(r) = tail(ra),
Most operations—such as selection, Cartesian product, False

difference, duplicate elimination, andp—retain the or- A

der of their (left) argument. Since the operation defini=y = Ar1,72.(r =L Ary =1) — True,

tions constrain the orders of their results, an operation (mn=L®r,=1)— False

from the conventional relational algebra with several im- isIn(head(r1),r2) —
plementation algorithms may result in several operations tail(r1) = remove(head(r1),72),
being added to our algebra. For example, separate defini- False

tions are needed for nested-loop join and sort-merge join,
since both return differently ordered results. =s S Ary,ra(r =L Ary =1) ~Trug
The projection result is ordered on the largest prefix of (rl, =L &r; =1) - False
its argument order that contains the projected attributes. isIn(head(r1),m2) — o
For example, if we project relation, which is sorted RmA”(head(rl)’rl}% :Z” head
on ((A, ASC), (B, ASC), (C, DESC)), on A andc, the result False mAll(hea (“)’“)E;
would be sorted on. Similarly, the result of aggregation

is ordered by the largest prefix of its argument order thaj,yiliary function RmAil removes all occurences of the
contains the grouping attributes. The result of sorting iggument tuple from the argument relation and returns the
the order specified by the sorting parameter if the Iatter,i@sumng relation.
not a prefix of the argument’s order, and the argument's\ye can exemplify different types of equivalences us-
order otherwise. The result of union-all is unordered, jng different variations of theAYMENT relation (Figures 1

An operation may (1) eliminate duplicates so that thgnd 4). RelationBAYMENT andPAYMENT 4 are not equiva-
result would only have distinct tuples, (2) retain duplirent as lists because the tuple ordering is different, but they
cates, i.e., the result would have distinct tugledy if the 5r¢ equivalent as multisets and sets. RelatRi$IENT 4
argument relation(s) contains only distinct tuples, or (ndpAYMENT5 are equivalent only as sets, because the

may generate duplicates in the result even if duplicates Qﬁgﬂe for employee ID 3 is repeated twiCeBAYMENT g.
not exist in the argument relation(s). Duplicate elimina-

tion and aggregation eliminate duplicates; and selection, PAYMENT 4 PAYMENT
Cartesian product, difference, sorting, afeg retain du- EmpID | Salary EmpID | Salary
plicates. Projection generates duplicates only if the pro- 2 80K 1 100K
jection attributes do not contain a key of the argument re- 1 100K 2 80K
lation, and union-all always generates duplicates. 3 130K 3 130K
4 110K 3 130K
5 110K 4 110K
5 110K

3 Relation Equivalences

Figure 4: Variations of theAYMENT Relation

The query optimizer does not always need to consider re-
lations as lists. For example, @RDER BYs not speci- The examples illustrate that we have an ordering be-
fied in a query, it is enough to consider relations as Muylyeen the types of equivalences. Two relations being
tisets. To enable this type of treatment of relations, threguivalent as multisets implies that they are also equiv-
types of eqivalences between relations are introducedjent as sets, and two relations being equivalent as lists
list equivalence €,), multiset eqivalence (=,), and implies that they are equivalent as both multisets and sets.
set equivalencex,). Two relations are list advalentif The different types of equalences can be exploited
they are identical; multiset equivalent if they are identicgh heuristics-based query optimization. Transformation
as multisets, taking into account duplicates, but not ordegjles (to be discussed in detail shortly) can be divided into
and set equivalent if they are identical as sets, ignorilﬂg'ee CategorieS, one for each type aﬁigq|ence_ For ex-
duplicates and order. ample, we may have a rutepr, —, expr,, which says

that after the replacement of expresséapr, in the orig-
Definition 3.1 Let functions =,, =, , and =5 be inal query plan by expressioexpr.,, the result relation
given, all with signatur¢R x R] — Boolean. Relations produced by the new plan will be list equivalent to the
r1 andr. arelist equivalent(r; =, r2), multiset equiva- result relation produced by the original plan, when eval-
lent(r; =, r2), andset equivalenfr, =5 o) if and only uated on the same argument relation(s). That said, the
if function =, , =,,, and =5 return True, respectively. result relations will also be multiset and set equivalent.

Another ruleezpr, —,, expr, says that if we replace(C1) oriar,y(r) = op, (ap,(r))
expr, by expr,, the new plan will yield a result relation(C2) oprvr.(r) =s op, (1) Uor,(r)
that may only be multiset equivalent to the result relatid3) 7P (0r:(r) =1 op,(op, (1))
produced by the original plan, because the application o-p(r) Zrr\op(r)
this rule does not preserve the order. This may be acce{§i) 7f,.....fn (Thy,. b (1) =1 Tpy 50 (1)
able though, if the result needs to be a multiset. For ex- (1r] attr(fi,..., fn) € Q0
ample, queryrs.i..,(PAYMENT) can return tuples in any [£1] attr(hy, .. hm) € Qr
order. In general, the type of the result specified by(g6) Tfreenfu (OP(1) Z2. 0P (7,1 (7))
query determines which transformation rules can be ex- [1x] attr(P) C attr(fr, ..., fn)

: - - -) Tfrfn(0P(1)) S0 Tp1 o (0P (Thy b (7)),
ploited. The next two sections list transformation rule whereh; = {a|i € {1,...,m}

and describe when they are applicable. A(hi € {f1,..., fa} V hi € attr(P))}
[r1] attr(P) C Q,
4 Transformation Rules (C8) 11 X 13 Zar 1 X 11
(Cg) Up(T'l XTQ) =r O’P(T‘l)XT'z
In this section, we provide an extensive set of transfor- [1r] attr(P) C Q,
mation rules for the algebra. First, we provide rules thét10) op(r1 x re) =1 71 x op(r2)
derive from the conventional relational algebra. Then we [1r] attr(P) C Q,,
discuss rules involving the duplicate elimination, sortingC11) s, ...z, (r1 X r2) = ma, (1) X 74, (r2), where
andtop operations. Ar={filie{l,...,n} Aattr(fi) €, },

The rules are given as equivalences that express that 42 = {fili € {Ll,....n} Aattr(fi) C Q.. }
two algebraic expressions are aglent according to one [1x] Vi € 1{417 o} ﬁt’“(ﬁ)ﬂg Qp, V attr(fi) C Qr,
of the three eqjualence types from Section 3; we always.., 7[;1] atlfrghllrlgli W)f) - o (ras (r1) X 7, ()
give the strongest eiualence type that holds. An al- whereA, — {alac QIH/\Z € ;ttr(fl;“wzfn)}’,
gebraic equivalence represents both a left-to-right and a As ={ala € Qg Aa € attr(fi, ..., f2)}
right-to-left transformation rule. If necessary, we mark [c1] attr(fi, ..., fn) C Qryxcro
pre-conditions that apply only for the left-to-right trans¢C13) (r, x r2) x rs =1 1 X (ro x r3)
formation by[1r] and pre-conditions that apply only for _ ‘
the right-to-left transformation bjr1]. Pre-conditions Egig; Zig:i k:i; ;z Zig:i; § Zzp(m
with no such marks apply to both directions. All rulegcig) ., 11y =, 7o U
can be verified formally, as the operations andeglance (c17) sp (ry Ury) =p op(r1) Uop(ra)
types have formal definitions. We believe the transformge18) =y, . ;. (ri Ure) =1 sy, g0 (r1) Uy, g (72)
tions are correct; reference [SJS99] provides an exam&lﬁg)
proof of one transformation rule.

In transformation rules; can be a base relation or ancz) ¢,,

TP (€g1,isgnsFres B (T)) =1 €g1 i sgn Fryee B (0P (T))
attr(P) C{g1,..-,9n}

operation tree. We denote the attribute domain of the attr(gi,....gn, F1,...,Fn) CH
schema of relation by 2,.. Functionatitr returns the set _ _
of attributes present in a selection predicate, projection Figure 5: Conventional Rules

functions, or a sorting list.
4.2 Duplicate Elimination Rules

4.1 Conventional Rules Figure 6 lists duplicate elimination rules. Rules D1-

The conventional transformation rules derive from th@2 indicate when duplicate elimination is not necessary.
rules for multisets given by [GUWOO]; we list them inRule D6 follows because aggregations involving only
Figure 5. The rules are ordered based on the operatitinctionsMIN andMAX are insensitive to duplicates.
they concern, e.g., rules C1-C4 concern selection. Duplicate elimination cannot be pushed before union-
Most rules satisfy the list equivalence, but the commadl because the latter may generate duplicates even if its
tativity rules, e.g., for Cartesian product and union-algrguments do not contain any. Also, duplicate elimination
satisfy only the=,, equivalence because the result resannot be pushed down before difference, because differ-
lations produced by the left- and right-side expressioesice is sensitive to the number of duplicates in both argu-
have differently ordered tuples (see rules C8 and C1@&)ents. If tuplet occursz times in the first argument and
Finally, rule C2 only satisfies=¢ equivalence because ify times in the second argumemnt &), it occursz — y
both predicate$; and P, are satisfied for a tuple of the times in the result. However, if we were to remove dupli-
right-hand side of the transformation would return two ineates first, tuplé would occur only once in each argument
stances of the same tuple. to the difference, and it would be absent from the result.

(D1) rdup(r
(D2) rdup(r

E r does not have duplicates dinality of the argument relations. These rules can only
(D3) rdup(op(r)) =1 op(rdup(r))

(

(

be applied if the exact cardinality is known, i.e., if the car-
dinality is only estimated, these rules are not applicable.

Y=o
)=sT

(D4) rdup(ry,.....1, (rdup(r))) =r rdup(ny,,... s, (1))
(D5) rdup(r1 x r2) = rdup(r1) X rdup(rs) (T1) top, (r)=wr n(r) <n
(D6) &g1..cogn oo P (Tdup (1)) =1 &1 . g Fr oo Fin (T) (T2) topn(rrf B
AggrFs(Fi,.. ., Fp) C {MIN,MAX} (T3) t0p:(r1 1>< !
(T4) top,,(r1 x r2
(T5) top, (ocp(r1 x r2)) =¢ op(top,,(r1) X r2)
(A1 =B1A...NA, =B,)€P)

Figure 6: Duplicate Elimination Rules

If duplication elimination is applied after an operation A{Ai,...,A,}is aforeign key of
that does not manufacture duplicates, we can remove the A{Bi,...,B,} is akey ofrs
duplicate elimination using rule D1. Thus, duplicate elim@6) top,, (ri1 U rs) = top, (r1) n(ri) >n
ination can be removed if it is performed on top of dupli€T7) top,, (r1 Urs) =¢ 71 U top,, (r2) n(ri)+n' =n

cate elimination or aggregation. .
ggreg Figure 8: TOPN Rules

4.3 Sorting Rul . -
orting Rules 5 Applicability of Transformation

Sorting can be eliminated if performed on a relation that

already satisfies the sorting, if we can treat the relation Rules
as multiset, or if there is a subsequent sorting operation. . . i
PredicatelsPrefizOf takes two lists as argument and re= Ueries express_ed n SQI.‘ are mappeq to an initial .al-
turns True is the first is a prefix of the second. The SOlg_ebralc expression, to Wh'ch the optimizer then applies
ing rules are given in Figure 7. Functiabrder(r) re- transformation rules according to some strategy. The

turns a list of attributes paired with a sorting type (aggisgltm?, nevvl :at!gebrterlllctexpress!onls Tijsi,hwhelnt.evalu-
cending or descending) for a relation for example, ated, return refations that are equiva‘ent to the refation re-

Order(r) = ((A, ASC), (B, DESC)). For an unordered re_turned by the original expression, which we assume cor-

lation, the function returns an empty list. rectly computes the user’s query. The type of equivalence
' required between result relations depends on the actual

(S1) sorta(r) =o r IsPrefizOf (A, Order(r)) query statement; we name the requirediegjance be-
(S2) sorta(r)=ur tween results theuter equivalencend assign it to the
(S3) sorta(sortp(r)) =¢ sorta(r) root of the query tree.
IsPrefizOf (B, A) For SQL queries, the outer equivalence is,, or
(S4) sorta(op(r)) =i op(sorta(r)) =, . 1, depending on whether the query given includes
(S5) sorta(myy, ..., (1) =r gy, 5, (s0TEA(T)) ORDER BY AThe presence dDRDER B¥pecifies a
[1r] atir(A) C Q. list; otherwise, the query specifies a multiset, rendering

[r1] attr(A) C attr(fi,..., fa)
(S6) sorta(ri X r2) =1 sorta(ri) X ra

[1r] attr(A) C Qr,
(S7) sorta(ri\ r2) =1 sorta(ri) \ r2

order of the result tuples immaterial. Intuitively, we can
apply transformation rules to a query evaluation plan if
the result relations produced by the new plan and the orig-

(S8) 507t A (Egy...ogm PP (7)) =1 inal plan are equivalent as multisets or lists, depending on
Egraniirnin (sorta(r)) WhetherornoORDER BWas specified.

attr(A) C {g1,...,9n} Having the outer equivalence, we can derive the re-

(S9) sort a(rdup(r)) = rdup(sort a(r)) quired equivalence for each operation in the query tree.

.) Due to the different characteristics of operations, an oper-

Figure 7: Sorting Rules ation somewhere in the query tree may require an equiv-

)) alence that is not the same as the outer equivalence. For
If we wish to sort the result of some operation, the Soré'xample, in the query tree shown in Figure 3(a), the outer
ing can be performed on the argument relation(s) for thé&uivalence is=, , but the operations between the top
operation if the operation preserves the ordering. All oR;,,; operation and theop operation do not need to pre-
erations except! fully or partially preserve the ordering gapye order; hence=,, rules are applicable.
of their first argument. The required equivalences constrain the types of trans-
formation rules that can be applied during query plan enu-

4.4 TOPN Rules 1Two relations are=;, 4 equivalent if they are=,, equivalent and

. . . . their projections on attribute listt are =;, equivalent. The=g, 4
Rules for thetop operation are given in Figure 8. SeVequivalence is slightly less restrictive tham, : the =, equivalence

eral rules have applicability conditions involving the cafimplies the =, 4 equivalence.

meration. There are no restrictions on rules of tgpe — to its parent. If this property holds at the parent, it also
these can always be applied safely because a transforreldls at a child, except: (1) when the parent operation is
expression evaluates to a result identical as a list to tldifference, the operation in question is located at the right
obtained from evaluating the original expression. child, and the relation produced by the left child does not
To enable the formal procedure of determining whenaontain duplicates; (2) when the parent operation is du-
transformation rule is applicable to a query plan, we irplicate elimination, because then the child operation may
troduce properties for the operations in an operation tregeal with duplicates in any way, since they will later be re-
moved; and (3) when the parent operation is aggregation
5.1 Definitions of Properties with only the duplicate-insensitive aggregation functions
(MIN andMAX).
Table 1 introduces two Boolean properties of operations
of a query tree. For each combination of the property va||-opp DupRelevant(op) |
ues, Table 2 gives an eiyalence type that should hold for[— - T ho o DupRelevant(op,)
results of that operation. A transformation rule of SOme | (7¢ft andright),
type can be applied at some location in a query tree|ify (jof; andright),
the result produced by its right-hand side is equivalenty,,t , top
to the result produced by its left-hand side according O\ (left) True
the required equivalence type, as specified by the prop BR (right)
ties for the top-most operation at that location. For e
ample, rule G8 guarantees only tke,, equivalence be-
tween its right- and left-hand side, but it can be applie
to the query plan in Figure 3(a) to both Cartesian prod-
ucts because the required equivalence at each locatiors

=, (the OrderReq property value is False). Table 3: TheDupRelevant Property

MayHaveDups(opies: (0pp))
“rdup False

Eg1 oG Fr e Fo, False if AggrFs(Fy,...,F,)
d C {MIN, MAX}
True otherwise

| Property Name | Description | To set the property for the right child of difference, an
OrderReq Trueif the result of the operatior’\ auxiliary propertyMayHaveDups is used, which tells if
must preserve some ordering the relation produced by the child operation may contain
DupRelevant | Trueif the operation cannot arbi- duplicates. This property is propagated bottom-up from
trarily add or remove duplicates | the base relations using the duplicate-preservation prop-
erties of operations as described in Section 2.4.
Table 1: Properties of an Operation in an Operation Tree The next case to consider is when the property does not
hold at the parent. Then, the property holds at a child in
the following situations: (1) when the parent operation is

| OrderReq(op) | DupRelevant(op) | Type | difference, the operation in question is located at the left
True True or False =ra child, or it is located at the right child, and the relation
False True =M produced at the left child does not contain duplicates; and
False False =5 (2) when the parent operation is aggregation with at least

one duplicate-sensitive functioa{(G, SUM, or COUNT).
Table 2: Combinations of Property Values and Corre- Table 4 describes the propagation of tBederReq
sponding Equivalence Types property. This property also depends almost entirely on
the parent of the operation. Most often, thederReq
During query optimization, the properties are first sgroperty holds for an operation at a child node when it
for the initial query evaluation plan. For the root, thdwolds for the operation at the parent node and the parent
OrderReq property is set to True only if the ORDERNode operation preserves the order of its argument. For
BY clause is specified at the outer-most level of the usexample, if order is required for a select operatio, (
guery, and theDupRelevant property is always set to then order will be required of the immediate child of that
True. Then, the two properties are propagated down thperation. However, if the parent operationsist, the
tree from the root. property does not hold for its immediate child because the
Table 3 defines th®upRelevant property values for a order of the argument is immaterial. In contrast, if the par-
non-root operatiomp. This property depends almost enent operation igop, the property holds for its immediate
tirely on the parent of the operation, denotgd,, and it child because the order of the argument is important.
is independent of the specifip. For binary operations, When a transformation rule is applied during query op-
keywordsleft andright denote the location afp relative timization, the properties must be adjusted. The top-down

| opp | OrderReq(op) | [DGK82] U. Dayal, N. Goodman, and R. H. Katz. An

op, Tr .t % (left),\ (left), | OrderReq(op,) Extended Relational Algebra with Control over Dupli-

rdup, &g, gn Fr... Fon cate Elimination. IrProc. PODSpp. 117-123 (1982).

Ll (left andright), x (right), False [GMc93] G. Graefe and W. J. McKenna. The \ol-

\ (right), sorta cano Optimizer Generator: Extensibility and Efficient

top,, True Search. IrProc. IEEE ICDE pp. 209-218 (1993).
[GUWOOQ] H. Garcia-Molina, J. D. Ullman, and

Table 4: TheOrderReq Property J. Widom.Database System Implementati6irentice
Hall (2000).

nature of property definitions ensures that adjustments {tBM] DB2 Universal Database and DB2 Connect for
most of the rules are local, i.e., it is not necessary to scan Windows, OS/2 and Unix. Administration Guide.

the whole operation tree [SJS01]. <www-4.ibm.com/cgi-bin/db2www/data/
db2/udb/winos2unix/support/document.d2w/
report?fn=db2v7d0frm3toc.htm >, current as of
6 Summary August 2, 2001.

With the advent of on-line analytical processing and tf{eKieSS] W. Kiessling. On Semantic Reefs and Efficient
use of database technology in Ir?ltternefsearch tﬁe orderin Processing of Correlation Queries with Aggregates. In
gy ’ 9YProc. VLDB,pp. 241-249 (1985).

of query results has gained new interest and prominence,))

Thus, TOP-N like queries have received increased attdf!u82] A. Klug. Equivalence of Relational Algebra and

tion in the user community, and major DBMS vendors Relational Calculus Query Languages Having Aggre-

have included support for such queries into their prod- 92t€ FUNCtionsJACM, 29(3): 699-717 (1982).

ucts over the past few years. However, order is far frolRLH97] H. Pirahesh, T. Y. C. Leung, and W. Hasan. A

a first-class citizen in query optimization, where relations Rule Engine for Query Transformation in Starburst

are often viewed as sets or multisets. In contrast, we be- and IBM DB2 C/S DBMS. InProc. IEEE ICDE pp.

lieve that, like duplicates, order should be afforded fully 391400 (1997).

integrated treatment in query optimization. [Mic] Microsoft SQL Server Product Documentation.
This paper presents a foundation for relational query <www.microsoft.com/sgl/techinfo/

optimization that offers comprehensive and precise han- productdoc/2000/ >, current as of July 27, 2001.

dling of duplicates and order. This is enabled by a lisforaDev] Oracle8i Application Developer’s Guide - Fun-

based algebra where relations thus can bevatgnt as damentals<technet.oracle.com/doc/

sets, multisets, or lists. This leads to three types of trans- server.815/a68003/toc.htm >, current as of July

formation rules that can be exploited during query opti- 27, 2001.

mization, depending on whether the ORDER BY or DISRjc92] J. Richardson. Supporting Lists in a Data Model

TINCT clauses are specified in an SQL query. In addi- (A Timely Approach). InProc. VLDB,pp. 127-138
tion, a procedure is offered for determining when a rule (1992).

qf some type is applicable to a query tree. Th.is foundeJS99] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass.
tion proposes to handle the sorting aleg operations as * oy plans for Conventional and Temporal Queries
all the other algebra operations during the search—spacemvolving Duplicates and Ordering. IWMECENTER

gener_at|0n. . . . TR-49 (1999). <www.cs.auc.dk/TimeCenter >,
While the foundation proposed here may readily be in- ., rent as of July 27, 2001.

tegrated into database textbooks so that students get)S01] G. Slivinskas, C. S. Jensen, and R. T. Snod-

posed to the issues related to duplicates and order, muc grass. A Foundation for Conventional and Temporal

research and engineering remains to be done to reflect the o . .
foundation in angefficientgquery optimizer, Query Optimization Addressing Duplicates and Or-

dering.|[EEE TKDE 13(1):21-49 (2001).
[SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan.
References Sequence Query ProcessingPioc. ACM SIGMOD,
pp. 430441 (1994).
[AIb91] J. Albert. Algebraic Properties of Bag DatgSLR95] P. Seshadri, M. Livny, and R. Ramakrishnan.
Types. InProc. VLDB,pp. 211-219 (1991). SEQ: A Model for Sequence DatabasesPtac. IEEE

[CK97] M. J. Carey and D. Kossmann. Processing Top ICDE, pp. 232-239 (1994).
N and Bottom N QueriesData Engineering Bulletin
20(3):12-19 (1997).

