
Bringing Order to Query Optimization

Giedrius Slivinskasy Christian S. Jenseny Richard T. Snodgrassz

y Department of Computer Science, Aalborg University, Denmark

z Department of Computer Science, University of Arizona, USA

Abstract

A variety of developments combine to highlight the need
for respecting order when manipulating relations. For ex-
ample, new functionality is being added to SQL to sup-
port OLAP-style querying in which order is frequently an
important aspect. The set- or multiset-based frameworks
for query optimization that are currently being taught to
database students are increasingly inadequate.

This paper presents a foundation for query optimiza-
tion that extends existing frameworks to also capture or-
dering. A list-based relational algebra is provided along
with three progressively stronger types of algebraic equiv-
alences, concrete query transformation rules that obey the
different equivalences, and a procedure for determining
which types of transformation rules are applicable for op-
timizing a query. The exposition follows the style cho-
sen by many textbooks, making it relatively easy to teach
this material in continuation of the material covered in the
textbooks, and to integrate this material into the textbooks.

1 Introduction

The relational model was originally conceived as a set-
based model—relations were sets of tuples. Over the
past three decades, this property has been proclaimed a
strength as well as a shortcoming of the relational model.

As a reflection of this controversy, the user-level rela-
tional query language of choice, SQL, has long offered
a peculiar mix of orderedness and unorderedness. To il-
lustrate, an ORDER BY clause permits to sorting of the
tuples resulting from query based on any combination of
their attributes, using ascending and descending order-
ings. However, this clause is far from a first class citizen
in SQL. Rather, this clause is an add-on that may be used
only at the outermost level of a query, for ordering the re-
sult. For example, it is impossible to create a view that
includes the ORDER BY clause.

With the more recent advent of on-line analytical pro-
cessing, the ordering of query results had gained new in-
terest and prominence. For example, ordered top-n lists
are often of interest in OLAP-style querying. Web search

has also led to proposals for exploiting order. Specifically,
it is desirable to compute the results of a search in an or-
dered, page-by-page fashion. This often affords fast com-
putation of the first results and often avoids computation
of the entire results.

Developments such as these have led to additions to
SQL. For example, Microsoft’s SQL Server [Mic] offers
a TOPN clause that, when specified with an integer ar-
gumentN in the SELECT clause of a query, limits the
number of tuples returned by the query to at most N.
When used in conjunction with the ORDER BY clause,
the first N tuples of the result according to the speci-
fied order are returned. The Oracle DBMS enables TOP
N queries by providing a pseudo-columnROWNUMthat
assigns rank values to rows according to a given OR-
DER BY clause [OraDev]. IBM’s DB2 supports the
clauses “FETCH FIRSTN ROWS ONLY” and “OPTI-
MIZE FORN ROWS”; the first returns the firstN rows,
while the second asks the optimizer to deliver the firstN

rows faster than the rest [IBM].

Whether to allow duplicates in query results, or to insist
on relations indeed being sets, has generated much discus-
sion. Informed scientists and practitioners have conducted
heated debates on this topic in trade magazines (not un-
like in nature to the debates on null values!). This debate
has been resolved in the sense that SQLdoesallow dupli-
cates, and query optimization frameworkshaveemerged
that consider relations as multisets and thus afford a sys-
tematic treatment of duplicates.

However, SQL remains mainly a set-oriented (or
multiset-oriented!) language, with order being an add-
on. This is perhaps the reason why the handling of or-
der in query optimization is also in some sense an add-on.
Query optimization frameworks formalize relations as ei-
ther sets or multisets, making it difficult to capture, and
formally reason about, order.

We believe that, like duplicates, order should be af-
forded fully integrated treatment in query optimization.
The reasons are several. First, order is inherent to the
physical representation of data—order thus occurs at the
bottom of query plans, which may be exploited to produce
better query plans. Second, systematic, unconstrained

1



reasoning about order throughout query plans, e.g., when
the queries involve TOP-N like clauses, may lead to better
plans.

This paper offers a foundation for relational query opti-
mization that offers comprehensive, sound, and integrated
coverage of duplicates and ordering. The foundation is
enabled by a relational algebra on relations that are de-
fined as lists and thus can be equivalent as sets, multisets,
or lists. These types of equivalences come into play be-
cause queries specify different types of results. For exam-
ple, an SQL query not including ORDER BY and DIS-
TINCT at the outermost level specifies a result of type
multiset, thus rendering the application of transformations
that need not preserve list equivalence.

The paper provides transformation rules that satisfy the
different equivalences and go beyond the existing sets of
rules known to the authors. In addition, a practical pro-
cedure is offered for determining when a type of transfor-
mation rule is applicable to a query.

Some work has been reported on relational algebras for
multisets [Alb91, DGK82, GUW00], with the most re-
cent of these, by Garcia-Molina et al., being also the most
extensive. This book offers comprehensive coverage of
query transformations that preserve set as well as multiset
equivalences. Formalizing relations as multisets, sorting
is permitted only at the outermost level. However, pushing
down sorting in a query plan can improve performance.
Moreover, in some cases, the sortingmustbe performed
early in the query evaluation. For example, DBMSs such
as Microsoft SQL Server allow the ORDER BY clause in
combination with the TOP predicate in subqueries, thus
requiring intermediate results to be sorted.

Recent work by Pirahesh et al. [PLH97] emphasizes
the importance of considering duplicates in DB2’s query
rewrite rules. However, duplicates are addressed as spe-
cial cases when defining rewrite rules, and no formal
foundation for reasoning about these is offered. Query
optimizers such as Volcano [GMc93] initially generate
search spaces of query plans without considering order-
ing, then take order into account when considering the
specific operator algorithms to use when transforming a
(logical) query plan into a concrete plan that may be exe-
cuted by the query processor.

Some research has been conducted on algebraic frame-
works for queries on lists. Richardson [Ric92] uses an
approach based on temporal logic to incorporate lists into
an object-oriented data model. Seshadri et al. [SLR94,
SLR95] propose a sequence data model and optimization
techniques for sequence queries; while the model is rela-
tionally complete, the focus is on the processing of oper-
ators specific to sequence data such as time series. Our
work aims to simplify and minimize the extensions to the
conventional relational algebra, as well as permit the treat-
ment of relations as multisets or sets, when order is not

important.
Carey and Kossmann [CK97] discuss how to efficiently

process TOPN and BOTTOMN queries by extend-
ing existing relational query processing architectures, and
they propose a number of possible optimizations for such
queries. These optimizations fit into this paper’s founda-
tion as specific transformation rules.

Our earlier work [SJS01] presented a foundation
for temporal query optimization including conventional
query optimization that covered duplicates and order, as
well as different types of transformation rules. All def-
initions omitted from this paper are included in that pa-
per, which also covers some additional related work.
The present paper considers only conventional query op-
timization, adds the TOPN operation and consequent
transformation rules, and makes the argument that ordered
relations should be treated systematically in query opti-
mizers and textbooks.

Section 2 proceeds to define the extended relational al-
gebra. The different types of algebraic equivalences are
described in Section 3, and the concrete transformation
rules that obey these are provided in Section 4. Section 5
gives a procedure for determining when a transformation
rule is applicable, and Section 6 concludes the paper.

2 An Extended Algebra

To formally capture duplicates and ordering, the algebra
to be defined must be based on relations that are lists. Be-
cause it is also necessary to treat relations as sets or mul-
tisets, the semantics of the algebra operations must follow
the conventional relational algebra.

It is also desirable that the operations be minimal and
orthogonal—each operation should perform one single
function and should minimally affect its argument(s) in
doing so. This way, replication of functionality is avoided,
and it is easier to combine operations in queries. Combi-
nations of operations, termedidioms, may be included for
efficiency, but should be identified as idioms.

We proceed to define the algebra, then exemplify the
algebra and discuss pertinent properties.

2.1 Database Structures

We define relation schemas, tuples, and relation schema
instances in turn. The definitions are the standard ones,
but adapted to address duplicates and order.

Definition 2.1 A relation schemais a four-tupleS =
(
;�; dom ;K ), where
 is a finite set of attributes,�
is a finite set of domains,dom : 
! � is a function that
associates a domain with each attribute, andK is a set of
sets of attributes from
. 2



Consider relationPAYMENT in Figure 1. Relation
schemaPAYMENT consists of the attributesEmpID and
Salary and is formally a four-tuple(
;�; dom ;K ),
where 
 = fEmpID; Salaryg, � = fnumberg,
dom = f(EmpID; number); (Salary; number)g, and
K = ffEmpIDgg; K is essentially a set of keys for the
schema.

PAYMENT

EmpID Salary

1 100K
2 80K
3 130K
4 110K
5 110K

Figure 1: RelationPAYMENT

Definition 2.2 A tuple over schemaS = (
;�; dom ;K )
is a functiont : 
! [Æ2�Æ, such that for every attribute
A of
, t(A) 2 dom(A). A relation schema instance over
S is a finite sequence of tuples overS such that for any
tuplest1; t2 and for any set of attributesfA1; : : : ; Ang in
K , t1(A1) 6= t2(A1) _ : : : _ t1(An) 6= t2(An). 2

Note that the definition of a relation schema instance (re-
lation, for short) corresponds to the definition of a list.
A relation can thus contain duplicate tuples, and the or-
dering of the tuples is significant. ThePAYMENT rela-
tion from Figure 1 is then the listht1; t2; t3; t4; t5i, where
t1 = f(EmpID; 1); (Salary; 100K)g and tuplest2–t5 cor-
respond to the other tuples of the figure.

2.2 Algebra Operations

We proceed to define the algebra operations. In the defi-
nitions, we useT to be the set of all tuples of any schema
andR to be the set of all relations, and letr 2 R; r =
ht1; t2; : : : ; tni. We use�-calculus for the definitions.
The definitions do not imply actual implementation algo-
rithms. The schema of the result relation is the same as the
schema of the argument relation unless noted otherwise.

Selection The selection operation� : [R � P ] ! R
corresponds to the well-known selection operation in the
relational algebra [GUW00]. The argument predicateP

from the set of all possible selection predicatesP is ex-
pressed as a subscript, i.e.,�P (r).

� , �r; P:(r =?)! r;

(tail(r) =?)! (P (head (r)) ! head (r);?);
(P (head (r))! head (r);?) @ �P (tail(r))

The arguments of an operation are given before the dot,
and the definition is given after the dot. In this defini-
tion, the first line says that ifr is empty (we denote an

empty relation by?), the operation returns it. Other-
wise, the second line is processed, which says that ifr

contains only one tuple (the remaining part of the rela-
tion, tail (r), is empty), we test the predicateP on the
first tuple (head (r)). If the predicate holds, the operation
returns the tuple; otherwise, it returns an empty relation.
If the second-line condition does not hold, the operation
returns the first tuple or an empty relation (depending on
the predicate), with the result of the operation applied to
the remaining part ofr appended (@).

The standard auxiliary functionshead , tail , @, and tu-
ple concatenation (Æ)—as well as the other auxiliary func-
tions used below—are defined elsewhere [SJS99].

Projection In the projection operation� : [R�F� : : :�
F ]! R,F is a set of arithmetic expressionsfi : T ! T ,
which includes any possible attribute names and which
return single-attribute tuples. For thePAYMENT relation,
one possible expressionfi is 2 � Salary AS X. Functions
f1; : : : ; fn are expressed as a subscript, i.e.,�f1;:::;fn(r).

� , �r; f1; : : : ; fn:(r =?)! r;

f1(head (L1)) Æ : : : Æ fn(head (L1))
@ �f1;:::;fn(tail(r))

The schema of the result relation follows from the defini-
tion of tuple concatenation.

We also define a foreign key below (for simplicity, for-
eign keys are defined at the instance level).

Definition 2.3 A set of attributesfA1; : : : ; Ang of rela-
tion schema instancer1 constitute aforeign key of relation
schema instancer1 with respect to a keyfB1; : : : ; Bng of
relation schema instancer2 if and only if�A1;:::;An(r1) �
�B1;:::;Bn(r2). 2

Union-all Operationt : [R�R]! R returns the union
of two argument relations,retaining duplicates. The op-
eration appends the second relation to the first one.

t , �r1; r2:(r1 =?)! r2;

head (r1) @ (tail (r1) t r2)

Cartesian Product Operation� : [R �R] ! R com-
putes the Cartesian product of two argument relations in
nested loop fashion. The definition uses the auxiliary
functionLoop : [T � R] ! Rsn. The schemas result-
ing from� andLoop follow from the definition of tuple
concatenation.

� , �r1; r2:((r1 =?) _ (r2 =?))!?;
Loop(head (r1); r2) t (tail (r1)� r2)

Loop , �t; r:(r =?)!?;
(t Æ head(r)) @ Loop(t; tail(r))



Informally, nested-loop join is a nested-loop Cartesian
product followed by a selection involving attributes from
both arguments of the Cartesian product, and, possibly,
followed by a projection.

Difference Operationn : [R�R]! R returns all tuples
of the first argument relation that are not in the second
argument relation.

n , �r1; r2:((r1 =?) _ (r2 =?))! r1;

isIn(head (r1); r2)!
(tail(r1) n remove(head (r1); r2));

head (r1) @ (tail(r1) n r2)

FunctionisIn returns True if the argument tuple exists in
the argument relation, and functionremove removes the
first occurrence of the argument tuple from the argument
relation.

Duplicate Elimination Operationrdup : R ! R re-
moves duplicates from the argument relation. This opera-
tion retains the first occurrence of each tuple and removes
all subsequent occurrences, if any.

rdup , �r:(r =?)! r;

isIn(head (r); tail (r)) !
rdup(head (r) @ remove(head (r); tail (r)));

head (r)@rdup(tail (r))

If the first tuple of the argument relation can be found in
the remaining part of the relation, the operation removes
that found tuple. Otherwise, the operation returns the first
tuple concatenated with the result of the operation applied
to the remaining part of the relation.

Aggregation Operation� : [R � 
 � : : : � 
 � F �
: : : � F] ! R performs aggregation according to given
grouping attributes and aggregation functions. The set of
attributes in the schema of the argument relations is de-
noted by
, and the set of all aggregation functions is de-
noted byF; an aggregate functionF i : R ! T takes
a relation as argument and returns a single-attribute tuple
containing the aggregate value. An example of an aggre-
gate function isAVG(Salary) AS D.

The operation returns one tuple for each unique se-
quence of grouping attributes. The schema of the result
relation follows from the definition of concatenation. Our
definition corresponds to that provided by Klug [Klu82]
and Garcia-Molina et al. [GUW00].

� , �r; g1; : : : ; gn; F1; : : : ; Fm:(r =?)! r;

(head (r):g1 Æ : : : Æ head (r):gn
Æ F1(GetGroupg1;:::;gn(r; head (r))) Æ : : :
Æ Fm(GetGroupg1;:::;gn(r; head (r))))
@ �g1;:::;gn;F1;:::;Fm(r

nGetGroupg1;:::;gn(r; head (r)))

The definition uses the auxiliary functionGetGroup,
which returns all tuples from the argument relation that
have grouping-attribute values equal to those of the argu-
ment tuple. If there are no grouping attributes, the func-
tion returns a list with all tuples of the relation.

Sorting Operationsort : [R�O
]! R sorts the argu-
ment relation. We denote the set of all possible orders for
attributes from
 byO
. The listh(A; ASC); (B; DESC)i is
an example of an order. First, we define auxiliary function
InsertTuple : [T �R�O
]! R, which inserts a tuple
into a sorted argument relation, maintaining its order. We
denote the argument order bya.

InsertTuple , �t; r; a:(r =?)! hti;
MustPrecede(t; head (r); a)! t@ r;

head (r) @ InsertTuple(t; tail(r); a)

FunctionMustPrecede returns True if the first argument
tuple precedes the second argument tuple according to the
argument order. Functionsort invokesInsertTuple for
each of its tuples.

sort , �r; a:(r =?)!?;
InsertTuple(head (r); sort(tail(r)); a)

Top Operationtop : [R � N ] ! R returns the firstn
tuples of the argument relation, wheren belongs to a set
of natural numbers,N .

top , �r; n:(r =? _ n = 0)!?;
head (r) @ topn�1(tail(r))

2.3 Example Query

Having defined these operations, we exemplify their use
in query plans, as well as indicate what kinds of transfor-
mations may be applied during optimization.

Let us consider two relations,PAYMENT (recall Fig-
ure 1) andEMPLOYEE (see Figure 2), and a query which
asks to list all employees (their IDs and names) with
salaries that are among the top three highest salaries in
the company, and requires the result to be sorted on the
Salary attribute in descending order. Note that the re-
sult (given in Figure 2) contains more than three tuples,
because several employees get the same salary.

EMPLOYEE Result
EmpID Name EmpID Name Salary

1 John 3 Peter 130K
2 Tom 4 Anna 110K
3 Peter 5 Suzanne 110K
4 Anna 1 John 100K
5 Suzanne

Figure 2: RelationEMPLOYEE and the Result Relation



top
3

PAYMENT

Order needs not be preserved Duplicates are not relevant

EMPLOYEE

Salary DESC

π
EmpID, Name, Salary

sort

σ
1.EmpID = 2.EmpID

σ

(a)

1.Salary = 2.Salary

3
PAYMENT top

rdup

sort
Salary DESC

π
Salary

PAYMENT

EMPLOYEE

σ
1.EmpID = 2.EmpID

π
EmpID, Name, Salary

σ

sort
Salary DESC

rdup

πSalary

PAYMENT

(b)

1.Salary = 2.Salary

Figure 3: Initial Query Plan (a) and Resulting Query Plan (b)

Figure 3(a) shows one possible initial query plan. First,
thePAYMENT relation is projected on itsSalary attribute,
then duplicates are removed, and the top three salaries are
selected. The Cartesian product and the subsequent se-
lection then find the IDs of all employees that receive a
top three salary, and another Cartesian product with a se-
lection is performed on the result and theEMPLOYEE rela-
tion in order to obtain the employees’ names. Finally, the
result is projected on required attributes (for brevity, we
do not specify from which relation the common attributes
come) and sorted on theSalary attribute.

Transformation rules that preserve different types of
equivalences are applicable to different parts of a query.
This is illustrated by the regions in Figure 3(a). Transfor-
mations below the topsort operation and above thetop
operation need not preserve order (indicated by the lighter
shading). The topsort operation ensures that the result is
correctly ordered. Transformations performed below the
rdup operation need not preserve duplicates, which is in-
dicated by the darker shading.

By systematically exploiting transformation rules pre-
serving different types of equivalences, we are able to
achieve an “optimized” query tree such as the one shown
in Figure 3(b). In this tree, the orders of the Cartesian
products have been switched, so that the left-most relation

is thePAYMENT relation projected on the top three salaries.
Since the Cartesian product is defined in nested-loop fash-
ion, the order of its left argument is preserved, and, con-
sequently, the topsort operation is no longer necessary.

Note that therdup, sort , and top operations do not
have to be separate operations. Since they could be ef-
ficiently implemented using a priority heap in main mem-
ory, an idiom involving the three operations may be de-
fined and used in query-plan generation.

2.4 Operation Properties

Section 2.2 defined only fundamental operations. The ad-
dition of derived operations (idioms), e.g., join (Cartesian
product followed by selection and projection) and regular
SQL union (union-all followed by duplicate elimination),
would not introduce any new issues in the framework.
However, idioms should be included in an implementa-
tion of the algebra.

The algebra differs fundamentally from the algebra pre-
sented in [GUW00], in that this latter algebra works on
multisets, not lists. However, all our operations except
top are list-insensitive, i.e., if their argument relations are
identical as multisets (but different as lists), their result
relations are also identical as multisets. When we treat
relations as multisets, our algebra is at least as expressive



as the one presented in [GUW00] because each operation
defined there may be expressed by combinations of the
first seven operations defined in Section 2.2.

Most operations—such as selection, Cartesian product,
difference, duplicate elimination, andtop—retain the or-
der of their (left) argument. Since the operation defini-
tions constrain the orders of their results, an operation
from the conventional relational algebra with several im-
plementation algorithms may result in several operations
being added to our algebra. For example, separate defini-
tions are needed for nested-loop join and sort-merge join,
since both return differently ordered results.

The projection result is ordered on the largest prefix of
its argument order that contains the projected attributes.
For example, if we project relationr, which is sorted
on h(A; ASC); (B; ASC); (C; DESC)i, on A andC, the result
would be sorted onA. Similarly, the result of aggregation
is ordered by the largest prefix of its argument order that
contains the grouping attributes. The result of sorting is
the order specified by the sorting parameter if the latter is
not a prefix of the argument’s order, and the argument’s
order otherwise. The result of union-all is unordered,

An operation may (1) eliminate duplicates so that the
result would only have distinct tuples, (2) retain dupli-
cates, i.e., the result would have distinct tuplesonly if the
argument relation(s) contains only distinct tuples, or (3)
may generate duplicates in the result even if duplicates do
not exist in the argument relation(s). Duplicate elimina-
tion and aggregation eliminate duplicates; and selection,
Cartesian product, difference, sorting, andtop retain du-
plicates. Projection generates duplicates only if the pro-
jection attributes do not contain a key of the argument re-
lation, and union-all always generates duplicates.

3 Relation Equivalences

The query optimizer does not always need to consider re-
lations as lists. For example, ifORDER BYis not speci-
fied in a query, it is enough to consider relations as mul-
tisets. To enable this type of treatment of relations, three
types of equivalences between relations are introduced:
list equivalence (�L ), multiset equivalence (�M ), and
set equivalence (�S ). Two relations are list equivalent if
they are identical; multiset equivalent if they are identical
as multisets, taking into account duplicates, but not order;
and set equivalent if they are identical as sets, ignoring
duplicates and order.

Definition 3.1 Let functions �L , �M , and �S be
given, all with signature[R �R] ! Boolean. Relations
r1 andr2 are list equivalent(r1 �L r2), multiset equiva-
lent (r1 �M r2), andset equivalent(r1 �S r2) if and only
if function �L , �M , and�S return True, respectively.

�L , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
(head (r1) = head (r2))! tail(r1)�L tail(r2);

False

�M , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
isIn(head (r1); r2)!

tail(r1)�M remove(head (r1); r2);
False

�S , �r1; r2:(r1 =? ^ r2 =?)! True;
(r1 =? � r2 =?)! False;
isIn(head (r1); r2)!

RmAll(head (r1); r1)�S

RmAll(head (r1); r2);
False 2

Auxiliary functionRmAll removes all occurences of the
argument tuple from the argument relation and returns the
resulting relation.

We can exemplify different types of equivalences us-
ing different variations of thePAYMENT relation (Figures 1
and 4). RelationsPAYMENT andPAYMENTA are not equiva-
lent as lists because the tuple ordering is different, but they
are equivalent as multisets and sets. RelationsPAYMENTA

andPAYMENTB are equivalent only as sets, because the
tuple for employee ID 3 is repeated twice inPAYMENTB .

PAYMENTA PAYMENTB

EmpID Salary EmpID Salary

2 80K 1 100K
1 100K 2 80K
3 130K 3 130K
4 110K 3 130K
5 110K 4 110K

5 110K

Figure 4: Variations of thePAYMENT Relation

The examples illustrate that we have an ordering be-
tween the types of equivalences. Two relations being
equivalent as multisets implies that they are also equiv-
alent as sets, and two relations being equivalent as lists
implies that they are equivalent as both multisets and sets.

The different types of equivalences can be exploited
in heuristics-based query optimization. Transformation
rules (to be discussed in detail shortly) can be divided into
three categories, one for each type of equivalence. For ex-
ample, we may have a ruleexpr 1 !L expr2, which says
that after the replacement of expressionexpr 1 in the orig-
inal query plan by expressionexpr 2, the result relation
produced by the new plan will be list equivalent to the
result relation produced by the original plan, when eval-
uated on the same argument relation(s). That said, the
result relations will also be multiset and set equivalent.



Another ruleexpr 1 !M expr 3 says that if we replace
expr1 by expr 3, the new plan will yield a result relation
that may only be multiset equivalent to the result relation
produced by the original plan, because the application of
this rule does not preserve the order. This may be accept-
able though, if the result needs to be a multiset. For ex-
ample, query�Salary(PAYMENT) can return tuples in any
order. In general, the type of the result specified by a
query determines which transformation rules can be ex-
ploited. The next two sections list transformation rules
and describe when they are applicable.

4 Transformation Rules

In this section, we provide an extensive set of transfor-
mation rules for the algebra. First, we provide rules that
derive from the conventional relational algebra. Then we
discuss rules involving the duplicate elimination, sorting,
andtop operations.

The rules are given as equivalences that express that
two algebraic expressions are equivalent according to one
of the three equivalence types from Section 3; we always
give the strongest equivalence type that holds. An al-
gebraic equivalence represents both a left-to-right and a
right-to-left transformation rule. If necessary, we mark
pre-conditions that apply only for the left-to-right trans-
formation by[lr] and pre-conditions that apply only for
the right-to-left transformation by[rl] . Pre-conditions
with no such marks apply to both directions. All rules
can be verified formally, as the operations and equivalence
types have formal definitions. We believe the transforma-
tions are correct; reference [SJS99] provides an example
proof of one transformation rule.

In transformation rules,r can be a base relation or an
operation tree. We denote the attribute domain of the
schema of relationr by 
r. Functionattr returns the set
of attributes present in a selection predicate, projection
functions, or a sorting list.

4.1 Conventional Rules

The conventional transformation rules derive from the
rules for multisets given by [GUW00]; we list them in
Figure 5. The rules are ordered based on the operation
they concern, e.g., rules C1–C4 concern selection.

Most rules satisfy the list equivalence, but the commu-
tativity rules, e.g., for Cartesian product and union-all,
satisfy only the�M equivalence because the result re-
lations produced by the left- and right-side expressions
have differently ordered tuples (see rules C8 and C16).
Finally, rule C2 only satisfies�S equivalence because if
both predicatesP1 andP2 are satisfied for a tuple ofr, the
right-hand side of the transformation would return two in-
stances of the same tuple.

(C1) �P1^P2(r)�L �P1 (�P2(r))
(C2) �P1_P2(r)�S �P1(r) t �P2(r)
(C3) �P1(�P2(r))�L �P2(�P1(r))
(C4) �:P (r)�L r n �P (r)

(C5) �f1;:::;fn(�h1;:::;hm(r))�L �f1;:::;fn(r)
[lr] attr (f1; : : : ; fn) � 
r

[rl] attr (h1; : : : ; hm) � 
r

(C6) �f1;:::;fn(�P (r))�L �P (�f1;:::;fn(r))
[lr] attr (P ) � attr (f1; : : : ; fn)

(C7) �f1;:::;fn(�P (r))�L �f1;:::;fn(�P (�h1;:::;hm(r))),
wherehi = fa j i 2 f1; : : : ;mg

^ (hi 2 ff1; : : : ; fng _ hi 2 attr(P ))g
[rl] attr (P ) � 
r

(C8) r1 � r2 �M r2 � r1

(C9) �P (r1 � r2)�L �P (r1)� r2

[lr] attr (P ) � 
r1

(C10) �P (r1 � r2)�L r1 � �P (r2)
[lr] attr (P ) � 
r2

(C11) �f1;:::;fn(r1 � r2)�L �A1
(r1)� �A2

(r2), where
A1 = ffi j i 2 f1; : : : ; ng ^ attr (fi) � 
r1g,
A2 = ffi j i 2 f1; : : : ; ng ^ attr (fi) � 
r2g

[lr] 8i 2 f1; : : : ; ng attr (fi) � 
r1 _ attr (fi) � 
r2

[rl] attr (A1) \ attr (A2) = ;

(C12) �f1;:::;fn(r1 � r2)�L �f1;:::;fn(�A1
(r1)� �A2

(r2)),
whereA1 = fa j a 2 
r1 ^ a 2 attr (f1; : : : ; fn)g,
A2 = fa j a 2 
r2 ^ a 2 attr (f1; : : : ; fn)g

[rl] attr (f1; : : : ; fn) � 
r1�r2

(C13) (r1 � r2)� r3 �L r1 � (r2 � r3)

(C14) �P (r1 n r2)�L �P (r1) n r2
(C15) �P (r1 n r2)�L �P (r1) n �P (r2)
(C16) r1 t r2 �M r2 t r1
(C17) �P (r1 t r2)�L �P (r1) t �P (r2)
(C18) �f1;:::;fn(r1 t r2)�L �f1;:::;fn(r1) t �f1;:::;fn(r2)

(C19) �P (�g1;:::;gn;F1;:::;Fm(r))�L �g1;:::;gn;F1;:::;Fm(�P (r))
attr (P ) � fg1; : : : ; gng

(C20) �g1;:::;gn;F1;:::;Fm(r)�L �g1;:::;gn;F1;:::;Fm(�H(r))
attr (g1; : : : ; gn; F1; : : : ; Fm) � H

Figure 5: Conventional Rules

4.2 Duplicate Elimination Rules

Figure 6 lists duplicate elimination rules. Rules D1–
D2 indicate when duplicate elimination is not necessary.
Rule D6 follows because aggregations involving only
functionsMIN andMAX are insensitive to duplicates.

Duplicate elimination cannot be pushed before union-
all because the latter may generate duplicates even if its
arguments do not contain any. Also, duplicate elimination
cannot be pushed down before difference, because differ-
ence is sensitive to the number of duplicates in both argu-
ments. If tuplet occursx times in the first argument and
y times in the second argument (y < x), it occursx � y

times in the result. However, if we were to remove dupli-
cates first, tupletwould occur only once in each argument
to the difference, and it would be absent from the result.



(D1) rdup(r)�L r r does not have duplicates
(D2) rdup(r)�S r
(D3) rdup(�P (r))�L �P (rdup(r))
(D4) rdup(�f1;:::;fn(rdup(r)))�L rdup(�f1;:::;fn(r))
(D5) rdup(r1 � r2)�L rdup(r1)� rdup(r2)
(D6) �g1;:::;gn;F1;:::;Fm(rdup(r))�L �g1;:::;gn;F1;:::;Fm(r)

AggrFs(F1; : : : ; Fm) � fMIN; MAXg

Figure 6: Duplicate Elimination Rules

If duplication elimination is applied after an operation
that does not manufacture duplicates, we can remove the
duplicate elimination using rule D1. Thus, duplicate elim-
ination can be removed if it is performed on top of dupli-
cate elimination or aggregation.

4.3 Sorting Rules

Sorting can be eliminated if performed on a relation that
already satisfies the sorting, if we can treat the relation
as multiset, or if there is a subsequent sorting operation.
PredicateIsPre�xOf takes two lists as argument and re-
turns True is the first is a prefix of the second. The sort-
ing rules are given in Figure 7. FunctionOrder(r) re-
turns a list of attributes paired with a sorting type (as-
cending or descending) for a relationr, for example,
Order(r) = h(A; ASC); (B; DESC)i. For an unordered re-
lation, the function returns an empty list.

(S1) sortA(r)�L r IsPre�xOf (A;Order(r))
(S2) sortA(r)�M r

(S3) sortA(sortB(r))�L sortA(r)
IsPre�xOf (B;A)

(S4) sortA(�P (r))�L �P (sortA(r))
(S5) sortA(�f1;:::;fn(r))�L �f1;:::;fn(sortA(r))

[lr] attr (A) � 
r

[rl] attr (A) � attr (f1; : : : ; fn)
(S6) sortA(r1 � r2)�L sortA(r1)� r2

[lr] attr (A) � 
r1

(S7) sortA(r1 n r2)�L sortA(r1) n r2
(S8) sortA(�g1;:::;gn;F1;:::;Fm(r))�L

�g1;:::;gn;F1;:::;Fm(sortA(r))
attr (A) � fg1; : : : ; gng

(S9) sortA(rdup(r))�L rdup(sortA(r))

Figure 7: Sorting Rules

If we wish to sort the result of some operation, the sort-
ing can be performed on the argument relation(s) for that
operation if the operation preserves the ordering. All op-
erations exceptt fully or partially preserve the ordering
of their first argument.

4.4 TOPN Rules

Rules for thetop operation are given in Figure 8. Sev-
eral rules have applicability conditions involving the car-

dinality of the argument relations. These rules can only
be applied if the exact cardinality is known, i.e., if the car-
dinality is only estimated, these rules are not applicable.

(T1) topn(r)�L r n(r) � n

(T2) topn(�f1;:::;fn(r))�L �f1;:::;fn(topn(r))
(T3) topn(r1 � r2)�L topn(topn(r1)� r2)
(T4) topn(r1 � r2)�L topn(r1 � topn(r2))
(T5) topn(�P (r1 � r2))�L �P (topn(r1)� r2)

((A1 = B1 ^ : : : ^An = Bn) 2 P )
^ fA1; : : : ; Ang is a foreign key ofr1
^ fB1; : : : ; Bng is a key ofr2

(T6) topn(r1 t r2)�L topn(r1) n(r1) � n

(T7) topn(r1 t r2)�L r1 t topn0(r2) n(r1) + n
0 = n

Figure 8: TOPN Rules

5 Applicability of Transformation
Rules

Queries expressed in SQL are mapped to an initial al-
gebraic expression, to which the optimizer then applies
transformation rules according to some strategy. The
resulting, new algebraic expressions must, when evalu-
ated, return relations that are equivalent to the relation re-
turned by the original expression, which we assume cor-
rectly computes the user’s query. The type of equivalence
required between result relations depends on the actual
query statement; we name the required equivalence be-
tween results theouter equivalenceand assign it to the
root of the query tree.

For SQL queries, the outer equivalence is�M or
�L;A

1, depending on whether the query given includes
ORDER BY A. The presence ofORDER BYspecifies a
list; otherwise, the query specifies a multiset, rendering
order of the result tuples immaterial. Intuitively, we can
apply transformation rules to a query evaluation plan if
the result relations produced by the new plan and the orig-
inal plan are equivalent as multisets or lists, depending on
whether or notORDER BYwas specified.

Having the outer equivalence, we can derive the re-
quired equivalence for each operation in the query tree.
Due to the different characteristics of operations, an oper-
ation somewhere in the query tree may require an equiv-
alence that is not the same as the outer equivalence. For
example, in the query tree shown in Figure 3(a), the outer
equivalence is�L , but the operations between the top
sort operation and thetop operation do not need to pre-
serve order; hence,�M rules are applicable.

The required equivalences constrain the types of trans-
formation rules that can be applied during query plan enu-

1Two relations are�L;A equivalent if they are�M equivalent and
their projections on attribute listA are �L equivalent. The�L;A
equivalence is slightly less restrictive than�L ; the �L equivalence
implies the�L;A equivalence.



meration. There are no restrictions on rules of type�L —
these can always be applied safely because a transformed
expression evaluates to a result identical as a list to that
obtained from evaluating the original expression.

To enable the formal procedure of determining when a
transformation rule is applicable to a query plan, we in-
troduce properties for the operations in an operation tree.

5.1 Definitions of Properties

Table 1 introduces two Boolean properties of operations
of a query tree. For each combination of the property val-
ues, Table 2 gives an equivalence type that should hold for
results of that operation. A transformation rule of some
type can be applied at some location in a query tree if
the result produced by its right-hand side is equivalent
to the result produced by its left-hand side according to
the required equivalence type, as specified by the proper-
ties for the top-most operation at that location. For ex-
ample, rule G8 guarantees only the�M equivalence be-
tween its right- and left-hand side, but it can be applied
to the query plan in Figure 3(a) to both Cartesian prod-
ucts because the required equivalence at each location is
�M (theOrderReq property value is False).

Property Name Description
OrderReq Trueif the result of the operation

must preserve some ordering
DupRelevant Trueif the operation cannot arbi-

trarily add or remove duplicates

Table 1: Properties of an Operation in an Operation Tree

OrderReq(op) DupRelevant(op) Type

True True or False �L;A

False True �M

False False �S

Table 2: Combinations of Property Values and Corre-
sponding Equivalence Types

During query optimization, the properties are first set
for the initial query evaluation plan. For the root, the
OrderReq property is set to True only if the ORDER
BY clause is specified at the outer-most level of the user
query, and theDupRelevant property is always set to
True. Then, the two properties are propagated down the
tree from the root.

Table 3 defines theDupRelevant property values for a
non-root operationop. This property depends almost en-
tirely on the parent of the operation, denotedopp , and it
is independent of the specificop. For binary operations,
keywordsleft andright denote the location ofop relative

to its parent. If this property holds at the parent, it also
holds at a child, except: (1) when the parent operation is
difference, the operation in question is located at the right
child, and the relation produced by the left child does not
contain duplicates; (2) when the parent operation is du-
plicate elimination, because then the child operation may
deal with duplicates in any way, since they will later be re-
moved; and (3) when the parent operation is aggregation
with only the duplicate-insensitive aggregation functions
(MIN andMAX).

opp DupRelevant(op)

�P , �f1;:::;fn , DupRelevant(opp)
t (left andright ),
� (left andright ),
sortA, topn
n (left) True
n (right) MayHaveDups(opleft (opp))

rdup False
�g1;:::;gn;F1;:::;Fm False if AggrFs(F1; : : : ; Fm)

� fMIN; MAXg
True otherwise

Table 3: TheDupRelevant Property

To set the property for the right child of difference, an
auxiliary propertyMayHaveDups is used, which tells if
the relation produced by the child operation may contain
duplicates. This property is propagated bottom-up from
the base relations using the duplicate-preservation prop-
erties of operations as described in Section 2.4.

The next case to consider is when the property does not
hold at the parent. Then, the property holds at a child in
the following situations: (1) when the parent operation is
difference, the operation in question is located at the left
child, or it is located at the right child, and the relation
produced at the left child does not contain duplicates; and
(2) when the parent operation is aggregation with at least
one duplicate-sensitive function (AVG, SUM, orCOUNT).

Table 4 describes the propagation of theOrderReq
property. This property also depends almost entirely on
the parent of the operation. Most often, theOrderReq
property holds for an operation at a child node when it
holds for the operation at the parent node and the parent
node operation preserves the order of its argument. For
example, if order is required for a select operation (�),
then order will be required of the immediate child of that
operation. However, if the parent operation issort , the
property does not hold for its immediate child because the
order of the argument is immaterial. In contrast, if the par-
ent operation istop, the property holds for its immediate
child because the order of the argument is important.

When a transformation rule is applied during query op-
timization, the properties must be adjusted. The top-down



opp OrderReq(op)

�P , �f1;:::;fn ,� (left), n (left), OrderReq(opp)
rdup, �g1;:::;gn;F1;:::;Fm
t (left andright),� (right), False
n (right), sortA
topn True

Table 4: TheOrderReq Property

nature of property definitions ensures that adjustments for
most of the rules are local, i.e., it is not necessary to scan
the whole operation tree [SJS01].

6 Summary

With the advent of on-line analytical processing and the
use of database technology in Internet search, the ordering
of query results has gained new interest and prominence.
Thus, TOP-N like queries have received increased atten-
tion in the user community, and major DBMS vendors
have included support for such queries into their prod-
ucts over the past few years. However, order is far from
a first-class citizen in query optimization, where relations
are often viewed as sets or multisets. In contrast, we be-
lieve that, like duplicates, order should be afforded fully
integrated treatment in query optimization.

This paper presents a foundation for relational query
optimization that offers comprehensive and precise han-
dling of duplicates and order. This is enabled by a list-
based algebra where relations thus can be equivalent as
sets, multisets, or lists. This leads to three types of trans-
formation rules that can be exploited during query opti-
mization, depending on whether the ORDER BY or DIS-
TINCT clauses are specified in an SQL query. In addi-
tion, a procedure is offered for determining when a rule
of some type is applicable to a query tree. This founda-
tion proposes to handle the sorting andtop operations as
all the other algebra operations during the search-space
generation.

While the foundation proposed here may readily be in-
tegrated into database textbooks so that students get ex-
posed to the issues related to duplicates and order, much
research and engineering remains to be done to reflect the
foundation in an efficient query optimizer.

References

[Alb91] J. Albert. Algebraic Properties of Bag Data
Types. InProc. VLDB,pp. 211–219 (1991).

[CK97] M. J. Carey and D. Kossmann. Processing Top
N and Bottom N Queries.Data Engineering Bulletin,
20(3):12–19 (1997).

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An
Extended Relational Algebra with Control over Dupli-
cate Elimination. InProc. PODS, pp. 117–123 (1982).

[GMc93] G. Graefe and W. J. McKenna. The Vol-
cano Optimizer Generator: Extensibility and Efficient
Search. InProc. IEEE ICDE, pp. 209–218 (1993).

[GUW00] H. Garcia-Molina, J. D. Ullman, and
J. Widom.Database System Implementation. Prentice
Hall (2000).

[IBM] DB2 Universal Database and DB2 Connect for
Windows, OS/2 and Unix. Administration Guide.
<www-4.ibm.com/cgi-bin/db2www/data/

db2/udb/winos2unix/support/document.d2w/

report?fn=db2v7d0frm3toc.htm >, current as of
August 2, 2001.

[Kie85] W. Kiessling. On Semantic Reefs and Efficient
Processing of Correlation Queries with Aggregates. In
Proc. VLDB,pp. 241–249 (1985).

[Klu82] A. Klug. Equivalence of Relational Algebra and
Relational Calculus Query Languages Having Aggre-
gate Functions.JACM, 29(3): 699–717 (1982).

[PLH97] H. Pirahesh, T. Y. C. Leung, and W. Hasan. A
Rule Engine for Query Transformation in Starburst
and IBM DB2 C/S DBMS. InProc. IEEE ICDE,pp.
391–400 (1997).

[Mic] Microsoft SQL Server Product Documentation.
<www.microsoft.com/sql/techinfo/

productdoc/2000/ >, current as of July 27, 2001.

[OraDev] Oracle8i Application Developer’s Guide - Fun-
damentals.<technet.oracle.com/doc/

server.815/a68003/toc.htm >, current as of July
27, 2001.

[Ric92] J. Richardson. Supporting Lists in a Data Model
(A Timely Approach). InProc. VLDB,pp. 127–138
(1992).

[SJS99] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass.
Query Plans for Conventional and Temporal Queries
Involving Duplicates and Ordering. TIMECENTER

TR-49 (1999). <www.cs.auc.dk/TimeCenter >,
current as of July 27, 2001.

[SJS01] G. Slivinskas, C. S. Jensen, and R. T. Snod-
grass. A Foundation for Conventional and Temporal
Query Optimization Addressing Duplicates and Or-
dering. IEEE TKDE, 13(1):21–49 (2001).

[SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan.
Sequence Query Processing. InProc. ACM SIGMOD,
pp. 430–441 (1994).

[SLR95] P. Seshadri, M. Livny, and R. Ramakrishnan.
SEQ: A Model for Sequence Databases. InProc. IEEE
ICDE, pp. 232–239 (1994).


