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Abstract

Biotech companies routinely generate vast amounts of bio-
logical measurement data that must be analyzed rapidly and
mined for diagnostic, prognostic, or drug evaluation pur-
poses. While these data analysis tasks are critical to their
success, they have not benefited from recent advances that
emerged from database and KDD research. In this paper,
we focus on two such tasks: on-line analysis of clinical study
data, and mining broad datasets for biomarkers. We exam-
ine the new requirements that are not met by current data
analysis technologies and we identify new database and KDD
research to address these needs. We describe our experience
implementing a Scientific OLAP system and a data mining
platform for the support of biomarker discovery at SurroMed,
and we outline some key technical challenges that must be
overcome before data analysis and data mining technologies
can be widely adopted in the biotech industry.

1 Introduction

A central mission among a growing number of biotech
companies is to discover biological markers. A biolog-
ical marker, or biomarker, is a “characteristic that is
measured and evaluated as an indication of normal bio-
logical processes, pathogenic processes or pharmacologic
responses to therapeutic intervention” [10]. For exam-
ple, high levels of cholesterol in human blood have com-
monly been used as a biomarker for heart diseases. New
biomarkers are being sought that enable diseases to be
diagnosed more accurately or earlier than is currently
possible. Thanks to breakthroughs in high-throughput
measurement technologies in the last five years [14, 13],
tools such as gene chips, protein chips, and mass spec-
trometry are now widely available that are capable of
detecting hundreds of thousands of gene products, pro-
teins, and small organic molecules. These tools enable
biotech companies to routinely generate, from tiny vol-
umes of biological materials, very high volumes of mea-
surement data that must be summarized, compared, and
viewed efficiently. This approach to biomarker discovery
is illustrated in Figure 1.

These data analysis tasks are critical to the success of
biotech companies in biomarker discovery, yet support
from technologies such as OLAP (see [3, 16] for recent
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Figure 1. “Shotgun” approach to biomarker discovery.

surveys of On-Line Analytical Processing) and data min-
ing has been inadequate. While these technologies have
been widely adopted in financial and e-commerce are-
nas, such is not the case in the biotech industry. To
understand why, let us take a closer look at the nature
of data generated in clinical studies, i.e., controlled sci-
entific experiments designed to answer specific clinical
research or engineering questions such as drug efficacy,
biomarker identification, and measurement method vali-
dation. Typically, the protocol for a clinical study speci-
fies the following “ingredients”: subject population, i.e.,
a well-characterized collection of subjects to be included
in the study; biological samples, i.e., what kinds of sam-
ples (e.g., tissues, body fluids), how many and when they
are drawn from the subjects; measurement methods, i.e.,
biological /chemical assays and instruments used to an-
alyze the samples. Figure 2 shows a view of what the
data schema might look like in a clinical study aimed at
evaluating drug efficacy.

| subject | draw | clinicalCls | drugCls | mi | mo | |

John 1 Asthma A 31| 54
John 2 Asthma A 4.6 | 5.3
Jane 1 Healthy B 1.2 | 5.5
Jane 2 Healthy B 1.7 | 5.6

Figure 2. Multidimensional view of clinical study data.

In this view, each row corresponds to an observation,
i.e., a biological sample with all its characteristics and
measurements performed. The draw column represents
the time point when the sample is taken, the clinical-
Cls (resp. drugCls) column represents the disease (resp.
drug) group which the subject belongs, and the m;’s
represent biological measurements. This example illus-
trates the fact that clinical study data have a natural



multidimensional view, where observations are the facts
of interest, draw, clinicalCls and drugCls are the dimen-
sions, and the biological measurements are the target
measures. While this view of clinical study data sug-
gests that OLAP and data mining tools may be used
for their analysis, a closer look reveals some fundamen-
tal differences between clinical studies and traditional
applications:

e The subject population is carefully selected to min-
imize sampling biases, especially when the num-
ber of these participants is limited (typically in the
100’s). Also, biological samples are drawn at carefully
planned time points.

e Observations are linked to subjects, while in tradi-
tional data analysis applications, subjects are usually
not tracked across transactions.

e The number of measurements made on each biological
sample is several orders of magnitude larger than the
number of samples, while in traditional applications,
the number of facts usually far exceeds the number of
target measures.

e An important goal of data analysis in clinical stud-
ies is to generate and validate hypotheses, following
established scientific methods. For instance, the pur-
pose may be to validate drug efficacy in clinical trials,
validate bioanalytical methods in assay development,
evaluate therapeutic effects in drug discovery, iden-
tify disease biomarkers for diagnosis or prognostics
purposes, study protein interactions, or calibrate and
optimize instruments.

e Traditionally, measures that are the target of analysis
are chosen carefully and often have clear meaning. In
clinical studies by contrast, we are typically less se-
lective about them, and domain knowledge about the
measurements made is often limited. In fact, many
clinical studies are designed precisely to help discover
this knowledge.

These differences translate into requirements that have
not been met by mainstream data analysis technologies.
In the next section, we propose the concept of Scientific
OLAP to accommodate the requirements unique to on-
line analysis of clinical study data and we describe our
experience implementing such a system at SurroMed.
In Section 3, we explain the challenges mining broad
datasets for biomarkers. We review some of the relevant
data mining approaches from the literature and explain
why they are not adequate. We then describe our expe-
rience implementing a data mining platform that sup-
ports biomarker discovery at SurroMed. Section 4 sum-
marizes key future challenges and the paper concludes
in Section 5.

2 Scientific OLAP for Clinical
Studies

In this section, we show new on-line data analysis re-
quirements that are not found in traditional OLAP but
that turn out to be very important for the domain of
clinical studies. Generally, these requirements include
more rigorous and richer types of data analysis using
established statistical methods, more stringent notions
of comparisons, the need to qualify results to minimize
chances of making the wrong inference based on a lim-
ited number of observations, and the ability to handle
large numbers of target measures. We propose the con-
cept of Scientific OLAP as an extension of traditional
OLAP that accommodates these unique requirements,
which we describe below.

2.1 Rank-based aggregation

In traditional OLAP and SQL systems, standard ag-
gregate operators are typically limited to COUNT, SUM,
AVG, STDDEV, MIN, and MAX. Notably missing from these
systems are the MEDIAN operator and the more general
PERCENTILE operator. However, in many experimental
sciences and in biology in particular, summarizing data
using medians and percentiles is the norm, for good
reasons. First, measurable biological entities, such as
the concentration of many proteins expressed in human
serum, often are not normally distributed. For these bi-
ological entities, MEDIAN gives a more accurate summary
than AVG. Furthermore, measurements often are noisy
and error-prone, which make MEDIAN a more robust op-
erator against outliers. Also, PERCENTILE gives a more
detailed summary of the data distribution and is com-
monly used to define and identify outliers.

While rank-based aggregate operators such as MEDIAN
and PERCENTILE are absent from traditional SQL and
OLAP systems, a partial solution has recently appeared
in some commercial systems where SQL is extended with
a family of functions, called analytic functions, that pro-
vides better support for analytical processing. An ex-
ample is the RANK analytic function which computes the
ranking for each row in a rowset, relative to a row-
dependent group of rows. To illustrate how this function
works, consider the view from Figure 2 and let us call
this view observations. The following query:

SELECT subject, clinicalCls, mq,

RANK () OVER

(PARTITION BY clinicalCls ORDER BY mgq)
FROM observations WHERE draw =1

computes the ranking in m; of all observations at time 1
within each clinical group. This ranking will be useful
for computing the median in m, for each clinical group,
as sketched in the following figure:
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The RANK analytic function may be used to implement
medians and percentiles, but the lack of true rank-based
aggregations makes the implementation of many statis-
tics commonly used in clinical studies both cumbersome
and inefficient.

2.2 Multiple-group comparison

A common question in clinical studies is whether or not
several groups of observations differ with respect to some
measures in any significant way and not by chance. For
instance, to study the effect of several drugs on human
subjects, a separate group of subjects is often recruited
for each drug, and in order to ensure that no bias has
been introduced in the drug group assignment, it is im-
portant to verify that the drug groups exhibit no signif-
icant differences before any drug is administered. An-
other common example of group comparison arises in
studies for diagnostic markers where a battery of mea-
surements is performed on subjects that belong to differ-
ent disease groups and where measurements that show
significant differences between the groups are to be iden-
tified.

Support for multiple-group comparisons in traditional
OLAP systems is typically limited to using first-order
statistics such as the mean. However, as the following
figure illustrates, these statistics are no longer sufficient
to detect subtle but important differences.
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In this figure, the differences in means of measurement
m1 between drug groups A and B are identical in both
graphs. However, since the values are more scattered
in the right graph than in the left graph, intuitively the
difference on the right should be less significant than the
difference on the left.

Thus, in order to support group comparisons which
are clearly more stringent in clinical studies, summaries
in OLAP must include not only the group averages but
also some second-order statistics such as the variance
within each group and some measure of how significant
the differences are. OLAP front-end tools that support
richer visualization are also needed. For instance, the

effects of drugs A, B, and C on measurement m; might
be summarized in the following plot:

m p-vaue=0.015

A B C  Post-treatment Drug Groups

using something called the p-value to measure the prob-
ability that the drug effects are identical by chance (i.e.,
the smaller the p-value is, the more significant the dif-
ference becomes).

A statistical test commonly used to measure signifi-
cance is the standard ANOVA F-statistic (see Analysis
of Variance in [12]), which can be implemented easily us-
ing an aggregate query nested within another: the inner
query summarizes the statistics within each group, the
outer query combines these statistics across all groups,
and both queries use only standard SQL aggregate op-
erators, as sketched in the following figure:
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This statistic assumes that the data is normally dis-
tributed (in statistics, tests that use the normality as-
sumption are called parametric). Alternatively, we can
use non-parametric statistics which are more robust
against data distribution variability, such as the Kruskal-
Wallis statistic [12]. To test the difference between
groups of values, the global ranking of all values is used:
the groups are dissimilar if the sum of the ranks within
a group is disproportionate to its size. Using the RANK
analytic function, the Kruskal-Wallis statistic can be im-
plemented as sketched in the following figure:
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2.3 Repeated observations

So far, in comparing groups of observations, we have ig-
nored that observations from different groups may be
related to each other. For example, some measurements
are made on the same subject albeit at different time
points, e.g., before and after treatment. These related



observations, or repeated observations, exemplify what
is known in classical statistical testing as repeated mea-
sures. Note that in repeated observations, the “com-
mon” parameter is not restricted to a subject and the
“varying” parameter can be any experimental condition.
For instance, in an experiment designed to evaluate the
effects of varying an instrument’s settings on the mea-
surements, the common parameter could be a calibration
sample and the varying parameter could be the speed at
which the instrument is run.

If we ignore these relationships between observations,
we may fail to detect small but significant group differ-
ences, as the following figure illustrates:

Draw Times

On the left, the difference between groups is not statis-
tically significant, since the difference in mean is small
compared with the variance within each group. But on
the right, with the additional knowledge that the obser-
vations are paired, intuition tells us that the difference
should be significant, since the observed values consis-
tently increase as we move from one group to the other,
albeit in very small amounts. Note that repeated obser-
vations are distinct from time series for which trend anal-
ysis is supported in many OLAP systems, since the vary-
ing parameter does not have to have a natural progres-
sion. Also, traditional multidimensional models have no
provisions for capturing the concept of repeated obser-
vations. To support their analysis, these models must
be extended with annotations that can be used to define
which dimensions, if any, play the role of common pa-
rameter. Once these relationships are captured, signif-
icance testing is not difficult: statistics commonly used
for comparing groups of repeated observations include
the Paired T-Test and the Wilcozon signed-rank statis-
tic [12], which can be implemented using standard SQL
aggregations and the RANK analytic function.

2.4 Scaling with the number of measures

In Section 1, we used a multidimensional view of the
clinical study data where each measurement is treated
as a separate target measure. Since the number of mea-
surements in typical clinical studies is extremely large
(say in the 10,000’s), this view is not practical: in order
to visualize the summary statistics for all the measures
using traditional OLAP front-end tools, one would have
to sequence through a large number of screens! A bet-
ter alternative is to represent the measurement type as
a dimension. Thus, slicing on a particular measurement
would show a summary of the comparative statistics for
that measurement. This representation also allows us to

compare all the measurements side by side in the same
plot, to use common OLAP operations such as dicing to
view only those measurements whose difference satisfies
a user-specified significance threshold, and to rank the
measurements according to their level of significance. An
extended OLAP front-end tool might visualize the sig-
nificance of the measurements in one chart as shown in
the following plot:
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which would help quickly reveal the important measure-
ments.

2.5 Implementation of a Scientific

OLAP system

Figure 3 depicts an on-line data analysis system we im-
plemented directly on top of a relational database, which
we use routinely to analyze clinical study data:
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Figure 3. A scientific OLAP system for clinical studies.

In this implementation, comparative statistics, included
in most analysis result summaries, are evaluated in
a statistics server, separate from the database server.
While some statistics could have been implemented us-
ing straight SQL, the use of an established statistical
computation engine to compute them is purely for ac-
ceptance reasons, that is, at least until a database ex-
tension certified for statistical analysis is available. This
decoupling results in processing inefficiencies mainly due
to high volumes of network traffic and to the inability
to take advantage of query optimization: for instance,
instead of relying on the relational engine to optimize
the execution of an aggregate query, the data is aggre-
gated on a group-at-a-time basis. Also, because aggre-
gate view materialization is not used, every new view
request is evaluated against the base data, which results
in further delay in processing the request.

To specify how data is to be aggregated and com-
pared, we do not use the cube manipulation metaphor
embodied in traditional OLAP front-end tools. Instead,
the interface allows the user to recursively partition a



given group of observations along any dimensions into
subgroups, and to select arbitrary subgroups to analyze
or compare. To illustrate this approach we call dynamic
group specification, Figure 4 shows a hierarchy of groups
of observations that the user obtained by first expanding
the top node (representing the initial set of observations)
along the clinicalCls dimension, and then expanding the
remaining nodes along the drugCls and draw dimensions:

Draw 1 Draw 2 Draw 1 Draw 2 Draw 1 Draw 2

Figure 4. Dynamic group specification.

From this hierarchy, if the user wants to compare the dif-
ferent drug groups of asthma patients, he would select
the nodes as highlighted in the figure. The system then
maps this group specification to SQL path query expres-
sions which the statistics server submits to the database
server for execution. The advantage of our approach to
group specification is two-fold: first, in order to view a
particular aggregation summary, the user is not required
to “navigate” through summaries for the intermediate
aggregations, which may involve unnecessary computa-
tions; furthermore, since our group hierarchy does not
require two nodes from the same level to be expanded
along the same dimension, our method of group specifi-
cation provides more flexibility than traditional OLAP
systems. However, the lack of navigational capability is
also a disadvantage, because it does not allow the user
to follow a train of thought. Also, our approach does not
scale well with dimensions that have a large number of
distinct values. Finally, because the number of measures
can be large, the summary of (comparative) analysis is
shown in a table format, one row per measure, instead
of a bar chart format used in a typical OLAP system.

3 Mining Broad Datasets for

Biomarkers

In this section, we assume that the measurements col-
lected on biological samples are used as the measurable
characteristics for biomarkers. Thus, the biomarkers we
are looking for are combinations of measurements (or
simply measures) that can be used to predict a clini-
cal endpoint, say a given disease. A broad dataset is
simply a collection of observations where the number of
measurements is much larger (typically several orders of
magnitude larger) than the number of observations [15].

Figure 5 illustrates a broad dataset with only 200 obser-
vations but 100 times as many measurements.

| observation | clinicalCls | m1 | ma | ... | maoo0o |
1 Asthma
200 Healthy

Figure 5. A broad dataset for biomarker discovery.

To find a biomarker, we would like to use these observa-
tions as a training set for building a classifier that can
accurately predict the clinical class from all or a subset of
the measurements. This description almost fits the clas-
sical definition of supervised learning [17], except that
the input to the problem is a broad dataset. In tradi-
tional supervised learning applications, a large number
of observations are typically available for training, and
the data dimensionality is usually much smaller than
the number of observations. Moreover, domain knowl-
edge is often available to help pre-select dimensions that
are relevant to the application. In our application, none
of these assumptions hold for the following reasons:

e Currently, the biological processes that underlie
many diseases are still poorly understood. To study
these diseases, since we have little a priori knowl-
edge of what measurements are important, we mea-
sure as many biological entities as possible, many of
which we know very little about. For example, the
number of different proteins that can be measured
in human blood is estimated to be in the 100,000’s.

e While traditional biomarkers use single biological
entity measurements (e.g. CD4" T-cell concentra-
tion), modern bioanalytical instruments can per-
form a variety of measurements at a much lower
granularity (e.g., subspecies of CD4T T-cells), many
of which do not directly correspond to known bio-
logical entities (e.g., mass spectrometry data [11]).
Our main premise is that a combination of several
of these lower granularity measurements may be
a much better disease indicator than many of the
biomarkers currently in use.

e Because of the potential interactions between bi-
ological entities, many of which are currently un-
known, “derived” measures are commonly consid-
ered besides the “base” measures. For example,
the ratio between T-cell and total white blood cell
counts is known to be a better indicator for asthma
than both counts used separately. Thus, if we sys-
tematically combine the base measures to derive
new measures using products and ratios for exam-
ple, the number of final measures to be considered
can be astronomical.



Most traditional classification techniques require that
the number of dimensions be small compared with the
number of training samples and thus cannot be applied
to analyze our broad datasets directly. For those tech-
niques that do not impose such a requirement, finding a
model with good prediction accuracy is highly unlikely
because of the large number of candidate models that
can fit the training set perfectly.

Thus, the high dimensionality of our broad datasets
must be reduced drastically before accurate classifiers
can be built. Figure 6 illustrates the relationship be-
tween dimensionality reduction and predictive modeling
in biomarker identification.
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Figure 6. Critical role of dimensionality reduction in

biomarker discovery.

It is important to distinguish between dimensionality
reduction and data reduction, a term often mentioned
in the KDD literature. In many data mining problems
that involves analyzing a large number of observations,
building a model can be time consuming. The challenge
there is how to reduce these observations to a much
smaller subset so that a model can be built more effi-
ciently, without degrading the quality of the model too
much. For example, various statistical sampling tech-
niques have been devised to solve this data reduction
problem, which clearly does not address our problem.
The distinction between dimensionality reduction and
data reduction is illustrated in Figure 7.
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Figure 7. Horizontal vs. vertical reduction.

Dimensionality reduction is not only critical for
biomarker identification but also important in its own
right because it may provide valuable insights into the
precise role various biological entities play in many dis-
ease processes. Surprisingly, there has been relatively
little KDD research in this area, as most research has
focused on scaling up with the number of observations
rather than the dimensionality. In the following, we dis-
cuss three main approaches to dimensionality reduction:

feature elimination, feature synthesis, and feature sub-
set selection. Generally, these approaches can be used
independently or in combination.

3.1 Feature Elimination

This approach assumes that among the initially large
pool of dimensions, many will not be useful in discrimi-
nating between different clinical classes and thus can be
eliminated from consideration. It is important to elim-
inate as many dimensions as possible early on because
of the sheer number of dimension combinations we must
consider eventually. There are mainly two ways a di-
mension can be eliminated:

e [t can be irrelevant, i.e., by itself, it cannot discrim-
inate between the classes.

e It can be redundant, i.e.,
with another dimension.

it has strong similarity

In the first case, each dimension is evaluated separately,
using any technique that scores how well it can discrim-
inate between classes, such as the measure of statistical
significant difference described in Section 2. A dimension
is eliminated if the score is lower than a user-specified
threshold. In the second case, each pair of dimensions
is evaluated for similarity using, for instance, some mea-
sure of correlation. If the similarity score is higher than
a user-specified threshold, one dimension in the pair can
be eliminated.

As a practical way to implement this approach, we
first eliminate all irrelevant dimensions, and among the
remaining dimensions, eliminate the ones that are redun-
dant. In a pair of highly similar dimensions, we choose
to eliminate the most irrelevant one. This approach can
be efficiently implemented and scales with the square of
dimensionality.

The main challenge using this approach is how to
choose the thresholds appropriately. There may be di-
mensions that are bad discriminators individually but
excellent discriminators when used in combination, as
the following figure illustrates.

Thus, setting a threshold too aggressively may result
in discarding the wrong dimensions, but setting it too
conservatively may not reduce the combinatorics suffi-
ciently.



3.2 Feature Synthesis

The main idea of this approach to data reduction is
to combine the original dimensions (assumed to be nu-
meric) into new and fewer dimensions that retain much
of the information encoded in the original dimensions.
Principal Component Analysis (PCA) and Partial Least
Square Regression (PLS) are commonly used techniques
for computing new dimensions that are linear combina-
tions of the original ones and are statistically uncorre-
lated with each other. The reader is referred to [5, 18] for
a more detailed description of these techniques. Essen-
tially, they are numerical techniques that find orthog-
onal directions in the original multidimensional space
that maximize the variance in the observations. For the
purpose of supervised classification, PLS performs bet-
ter than PCA since it also maximizes the correlation of
the observations with the class label. To mine a broad
data set, the observations are first projected onto the
new dimensions (computed by PCA/PLS). These pro-
jections can then be used as the training data for a model
builder, as illustrated in the following figure:
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PCA and PLS are usually used to reduce the dimen-
sionality of a dataset when the dimensionality is less than
the number of observations. When the dimensionality
is larger, these techniques must be extended, but the
number of new dimensions can never exceed the number
of observations. As a consequence, the reduction ratio
needed for our broad datasets would be very significant:
it would be very unlikely that the new dimensions are
better than the original dimensions at discriminating be-
tween classes. Furthermore, if the new dimensions pro-
duced by PCA /PLS are used to build classifiers, classifi-
cation of new data still uses all the original dimensions,
since each new dimension is a function of all the origi-
nal dimensions. From a practical standpoint, biomarkers
that require measuring a large number of biological enti-
ties are not desirable. Finally, the numeric coefficients in
the combinations do not tell us a lot about the original
dimensions (e.g., the fact that two dimensions are highly
correlated) and may not help us focus our attention on
a few promising dimensions on which to do further anal-
yses.

3.3 Feature Subset Selection

The problem of identifying dimension subsets that can
be used to build accurate classifiers is not new and is
known in the KDD community as feature subset selec-
tion (see [9, 2] for recent surveys). What makes this
problem interesting is not only the high combinatorics
involved but also the absence of obvious pruning heuris-
tics: for example, prediction accuracy is not a monotonic
function of the dimension sets with respect to set inclu-
sion.

Unfortunately, most work in this area has been moti-
vated differently than ours. Most of this work implicitly
assumes a good predictive model that uses the full set of
dimensions can be built. Since computational complex-
ity of model building increases rapidly with dimensional-
ity, their main goal is to reduce the number of dimensions
in order to improve model building efficiency without de-
grading the prediction accuracy too much. Typically in
this work, we observe that experimental results are given
for relatively small dimensionalities (e.g., a few hundreds
at the most) and the reduction ratio is not very signifi-
cant.

In contrast, in mining broad data sets for biomarkers,
the problem characteristics are vastly different. Since
our data dimensionality is much higher than the number
of observations used for training, a drastic dimensional-
ity reduction is not only desirable but imperative. Thus,
dimensionality reduction is no longer an optimization is-
sue but rather a necessity. Consequently, efficient solu-
tions to the feature subset selection problem are critical
and must scale well with dimensionality.

To the best of our knowledge, most work from the
literature does not address the issue of scaling with di-
mensionality. While many techniques (e.g., those that
exhaustively evaluate all dimension subsets) are clearly
not scalable, we identified a few that seem promising.
In the remainder of this section, we discuss two such
techniques, both based on greedy methods, that look
interesting.

3.3.1 Stepwise Discriminant Analysis

This technique is worth mentioning because not only it
is well known in the statistics community [4] but also it
is implemented in many commercial statistical packages.
Stepwise discriminant analysis (SDA) does not analyze
all dimension subsets exhaustively, but rather tries to it-
eratively modify a candidate dimension subset (starting
from the empty set) until no improvement is possible.
As sketched in Figure 8, this procedure takes as input
a set M of dimensions, a threshold F,,, for includ-
ing a dimension in the candidate solution, a threshold
Fremove for removal, a desirable size of the solution, and
produces a solution dimension subset B. In this figure,
F(S,v) denotes a statistic (based on Wilk’s Lambda [4])
that measures the contribution of dimension v to group
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Figure 8. Stepwise discriminant analysis algorithm.

discrimination in addition to the contribution of a given
dimension subset S.

Note that in its most general form, SDA performs both
inclusion and removal steps at each iteration. A simpler
form of SDA, called forward SDA, does not have the
removal step. This form of SDA is particularly interest-
ing because of its computational efficiency: for a n x d
data set (with n observations and d dimensions) where
n << d, if we restrict ourselves to subsets of at most
n dimensions, the running time complexity of the al-
gorithm is n3d. The forward SDA method is shown in
Figure 9 as the forward arrow.
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Figure 9. Forward vs. backward search for biomarkers.

However, since the algorithm steps forward greedily,
it may be stuck on a path to a suboptimal solution.
Keeping the removal step in the general form of SDA
may help us undo bad decisions made earlier on, but
the main challenge there is how to select appropriate
values for the two thresholds so as to keep the number
of iterations reasonably bounded. How these thresholds
affect the algorithm’s behavior and model accuracy is
not well understood.

3.3.2 Cross-entropy-based feature elimination

Like other greedy methods, this technique, due to Koller
and Sahami [7], starts with the full dimension set and
iteratively removes dimensions from the set until no re-
moval is possible. As sketched in Figure 10, this proce-
dure takes as input a set M of dimensions, a parameter
K for fine tuning, a desirable size of the solution, and
produces a solution dimension subset B. In this figure,
S, represents an “information cover” for v, i.e., a dimen-
sion subset to which v adds little additional information,
and E(v,S,) denotes a cross-entropy measure [6] that
quantifies the amount of information dimension v gives
us beyond what S, already captures. Thus, a dimen-
sion is removed from consideration if the information
loss caused by the removal is small.

Compute "correlation” between
dl pairsof dimensionsin =~ M

B=M

¥

Foreach vin B, let S bethesetof K

dimensionsin B most "correlated"
with v. Compute E(v,S, ).

v

Choose v from B that minimizes E(v,S, ).

v

Move vfrom Bto M

|

Figure 10. Feature elimination algorithm based on cross-
entropy.

What sets this technique apart from the others is the
information-theoretic nature of the criterion used for fea-
ture selection. The main advantage of using this cri-
terion is that when the number of dimensions is much
larger than the number of observations, the concept re-
mains meaningful while the commonly used concept of
prediction accuracy runs into difficulties. They also
claim that the backward elimination strategy used in
their technique is less likely to lead to a suboptimal solu-
tion than the commonly used forward inclusion strategy,
because intuitively you are trying to preserve informa-
tion in the full dimension set. Moreover, because the
criterion for selecting dimensions does not incorporate
any specific learning biases, the dimension subset solu-
tion is suitable for building predictive models using a
wide range of classification techniques. To implement
the algorithm efficiently, Koller and Sahami [7] used an
approximation of the cross-entropy criterion: for a n x d
broad dataset, the running time complexity to find a
subset of at most n dimensions is d?(n + logd). The
Koller and Sahami method is shown in Figure 9 as the
backward arrow.

Before this technique can be useful, several issues re-



main to be addressed. First, computing cross-entropy
requires accurate estimates of various probability dis-
tributions. Unfortunately, this accuracy can be severely
limited by the number of observations available for train-
ing, especially when dealing with continuous dimensions
which must be discretized. Moreover, while the particu-
lar approximation to cross-entropy used in this technique
allows an efficient algorithm to be implemented, it can
lead to solutions that are suboptimal. Thus, better ap-
proximations are desirable, but the challenge is to how
to keep the algorithm reasonably efficient. Finally, the
number of dimensions we would like to retain should be
less than the number of observations which is much less
than the original dimensionality. Consequently, since
the optimal solution is very “far” from the full dimen-
sion set, it is not at all clear whether or not a backward
elimination strategy would still be superior to a forward
inclusion strategy.

3.4 Implementation of a Data Mining
Platform for Biomarker Discovery

Figure 11 illustrates the approach we used to implement

a platform for biomarker discovery.
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Figure 11. SurroMed’s data mining platform for biomarker
discovery.

In our approach, we first try to eliminate measures that
are redundant or irrelevant to distinguishing samples
from different clinical classes, using techniques described
in Section 3.1. We then analyze all measure combina-
tions of a given size by building a classifier for each com-
bination and counting the errors made by the classifier.
At this point, the user can either select the top few com-
binations to use as biomarkers, or perform a market bas-
ket analysis [1] on all those highly scored combinations
to identify any useful measure patterns in biomarkers.
In practice, our tool limits the user to the analysis of
only small biomarkers, i.e., biomarkers with at most two
or three measures. Analyzing larger biomarkers would
take a prohibitively long time, unless the initial thresh-
olds are set high enough to reduce the combinatorics.
Unfortunately then, as we pointed out in Section 3.1, we
may lose many good biomarkers.

4 Future Challenges

We briefly summarizes some of the key technical chal-
lenges that remain to be addressed in order to extend
current data analysis technologies to the life sciences
and perhaps also to other disciplines where controlled
scientific experiments are conducted.

Precomputing rank-based aggregations A com-
mon approach used in many OLAP systems to speed
up aggregate queries is to use materialized subqueries
to answer the original queries. This approach assumes
that the original queries can be answered using the sub-
queries. For instance, an AVG query using a set S of
group-by attributes can be computed as a weighted av-
erage over any AVG query that uses a superset of S as
group-by attributes. However, most rank-based aggre-
gate operators (e.g. MEDIAN) are not associative, and the
use of materialized queries to optimize queries involving
these operators is not obvious.

User-defined percentiles Medians and percentiles do
not have a standard definition, especially for even-sized
sets of values and bags. Short of providing a generic
user-defined aggregation facility, it is not clear how to
support all their variant definitions efficiently.

Custom comparative statistics Among the com-
monly used comparative statistics techniques, many are
difficult to express as a composition of SQL aggregate
queries. Implementing these techniques requires using
sophisticated aggregation mechanisms that can be dif-
ficult to provide. For example, traditional aggregation
can only reduce a set of values to a single value. To
implement user-definable independent group compara-
tive statistics may require using the powerset aggrega-
tion which would reduce a set of sets of values to a sin-
gle value. Another aggregation, required for implement-
ing user-definable paired groups comparative statistics,
is the multi-attribute aggregation where the aggregate
operator can take an arbitrary number of arguments.

Large scale visualization Traditional OLAP front-
end tools provide a very limited form of visualization:
bar charting. Comparing a large number of measures
(say in the 10,000’s) requires using visualization tech-
niques beyond bar charts that should be both intuitive
and compact (see [8] for a survey of visualization tech-
niques used in pharmaceutical research), and that can
be implemented efficiently. The challenge is to identify
such a powerful and general technique.

Mining broad datasets One of the main unmet chal-
lenges is to make feature subset selection algorithms scal-
able with respect to the number of dimensions. Also,
most existing greedy algorithms identify only one solu-
tion, which is clearly not adequate since many optimal
biomarkers are expected to be found and we would like
to identify as many of them as possible. Finally, the



purpose of decoupling feature elimination from feature
subset selection is mainly to reduce the combinatorics.
Unfortunately, we may never be able to achieve this goal
without losing many useful dimensions.

5 Conclusion

The volume of experimental biological data generated in
the life sciences is growing at an alarming rate. Yet, well
integrated software tools and scalable algorithms for an-
alyzing this data quickly are still underdeveloped. We
described two data analysis tasks whose solution is crit-
ical to the success of many biotech companies but raises
challenges that have yet to be addressed in database and
KDD research. Bioinformatics must industrialize, but
until we overcome the challenges posed, it will remain a
major bottleneck in the quest for new or better disease
treatments.
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