Re-designing Distance Functions and Distance-Based Applications for High
Dimensional Data

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
charu@watson.ibm.com

Abstract

In recent years, the detrimental effects of the curse of high
dimensionality have been studied in great detail on several
problems such as clustering, nearest neighbor search, and
indexing. In high dimensional space the data becomes
sparse, and traditional indexing and algorithmic techniques
fail from the performance perspective. Recent research
results show that in high dimensional space, the concept
of proximity may not even be qualitatively meaningful [6].
In this paper, we try to outline the effects of generalizing
low dimensional techniques to high dimensional applications
and the natural effects of sparsity on distance based
applications. We outline the guidelines required in order
to re-design either the distance functions or the distance-
based applications in a meaningful way for high dimensional
domains. We provide novel perspectives and insights on
some new lines of work for broadening application definitions
in order to effectively deal with the dimensionality curse.

1 Introduction

In recent years, high dimensional search, retrieval and
clustering have become very well studied problems be-
cause of the increased importance of high dimensional
data mining applications. For such applications, the
curse of high dimensionality tends to be a major ob-
stacle in the development of effective algorithmic tech-
niques in several ways. For example, the performance
of similarity indexing structures in high dimensions de-
grades rapidly, so that each query requires the access of
almost all the data. Clustering algorithms often behave
in an unstable way, and sometimes fail to be perfor-
mance efficient for high dimensional problems. Similar
issues are encountered by classification problems in high
dimensionality; it becomes difficult to model the prox-
imity in the feature space onto proximity for the class

variable. In high dimensional space, the data sparsity
makes the concept of proximity difficult to visualize in
an intuitively acceptable way. Often the direct applica-
tion of distance-based methods (which were originally
designed with an intuitive assumption of low dimen-
sionality) to high dimensional problems result in unex-
pected performance and qualitative costs.

In order to understand the effects of the dimensional-
ity curse on these problems more effectively, it helps to
investigate the nature of underlying applications which
make these problems important: it turns out that the
same definitions of distance functions and distance-
based applications which are used for low dimensions
are no longer so relevant with increasing dimensional-
ity. We discuss recent research results which deal with
such problems in two ways:

e Problems such as similarity search and clustering
may be redefined for high dimensional data in order to
make them more effective and meaningful. Examples
of such techniques are projected clustering and projected
nearest neighbor search [2, 3, 10]. These methods are
generalized definitions of the clustering and similarity
search problem in which the problems are re-defined by
using projections of the data which are locality specific.
For example, a cluster is defined as a set of points which
are closely related in some low dimensional projection;
a different cluster may use some other low dimensional
projection.  These techniques have the additional
advantage of providing interesting information about
the data in terms of locality specific projections.

e A second approach is to change the underlying
distance function in order to more accurately reflect the
particular characteristics of the data set. This approach
provides less information about the characteristics of
the specific data set and requires greater understanding
of the data; on the other hand this can be powerful
in providing the ability to use well known algorithms
for distance-based applications by only modifying the
underlying distance function.



1.1 Theoretical Background

We will first establish certain notations and definitions
which are very helpful for the purpose of explaining
some recent results on high dimensional proximity.

d : Dimensionality of the data space.

N : Number of data points.

X : Data point from d-dimensional data distribution.
disty(Xy) : Distance of Xy from the origin (0, ...,0).
Dming, Dmaz, : Nearest/Farthest distance of N points
to origin.

E[X],var[X] : Expected value/variance of X.

Yq —p ¢ : Yy converges in probability to c as d = oo.

Theorem 1.1 Beyer et al. [6] If:

. distg(X
limg_soo var (Wj(;g)]) =0, then:

Dmaxg—Dming
Dming _>p 0.

Proof: See [6] for proof of a more general version of
this result. ]
Thus, this result shows that under certain pre-conditions
on the data distribution and distance function, the dif-
ference between the maximum and minimum distances
to a given target is small compared to the absolute dis-
tance to the nearest point in high dimensional space.
This makes a proximity query unstable because a small
relative change in a query point in a direction away from
the nearest neighbor could change it into the furthest
neighbor. In such a situation, it becomes quite ques-
tionable whether a nearest neighbor indeed has suffi-
cient qualitative significance.

These results are also valuable from the performance
perspective of indexing. Most indexing methods work
by using some kind of partitioning (hierarchical or flat)
of the data set. This partitioning is then used in order
to perform pruning of the data set. The idea is that
if it is already known that some neighbor X is close
enough to the target, then one can prune away an entire
partition by showing that the optimistic distance bound
of the target to that partition is no better than the
distance to X . If almost all points are equidistant to the
target, then this optimistic bound is usually not sharp
enough for effective pruning. This means that in high
dimensional space, any indexing structure will access
all the data. From this observation, it is clear that we
not only need to create distance functions which are
meaningful, but we also need a way to make it friendly
to the performance needs of the application (which is
indexing in this case).

An interesting observation is that all the above di-
mensionality susceptible issues (both from the perfor-
mance and meaningfulness perspective) can be traced
back to the lack of contrast between the nearest and
furthest neighbor. For example, consider a standard

clustering algorithm in high dimensional data. If ev-
ery pair of points is almost equi-distant, then what is
meant by a cluster? How can we distinguish a clus-
ter from the remaining data set? Would a randomized
clustering algorithm provide stable results over multi-
ple runs, and provide the same clusters for each run?
It is indeed quite well known [3] that high dimensional
clustering algorithms are unstable; different runs lead
to significantly different clusters; furthermore none of
these clusterings can be intuitively considered any bet-
ter than the other because of the difficulty in defining
proximity meaningfully. The criticality of the proximity
problem tends to imply that by making a few changes
to a small class of methods (such as the distance func-
tion), we may be able to create dimensionality resistant
methods for a large number of problems.

1.2 Related Work on Distance Functions

The use of effective distance functions has been explored
for data domains such as information retrieval and cat-
egorical data [7, 9, 14]. In both cases, the data shows
certain typical domain-specific characterisitics. For ex-
ample, the former domain is a zero-dominated (most
attributes take on zero value) domain, whereas the lat-
ter is one in which there is no ordering of values for a
given attribute. For such cases, specialized normaliza-
tion techniques and statistical aggregate measures are
used in order to identify the non-noisy aspects of the
data and measure distances in a meaningful way.

We advocate the use of such statistical techniques
even for arbitrary data sets in order to design effective
high dimensional distance functions. The key is to be
able to design meaningful distance functions which are
also friendly to the performance needs of an application.
For example, for an indexing application, we would like
to be able to design a distance function which is index-
friendly from a performance point of view; at the same
time this performance gain should be obtained without
sacrificing the quality of the distance function.

2 Redesigning Applications versus
Redesigning Distance Functions

As we mentioned earlier, there are two ways of handling
the meaninglessness issue of high dimensionality. One
solution is to re-define problems such as clustering and
similarity search in a more flexible way by examining
them in the context of locality specific projections.
Examples of such re-definitions are as follows:

e In projected clustering [2, 3], clusters are defined
by partitioning the points such that each cluster
exists within its own restricted set of dimensions.
Even though the points are equi-distant from one
another in full dimensionality, each cluster-specific



projection provides s subspace in which a particular
set of points are close to one another.

e In projected nearest neighbor search [10], we search
for interesting query-specific features which pro-
vide greatest discrimination in the neighborhood of
the query point. These query specific features are
used in order to define the most similar objects.
This technique also provides interesting information
about the dimensional selectivity in the neighbor-
hood of a query-point.

In general, these techniques have the advantage of pro-
viding additional information about the data set in
terms of locality-specific projections [2, 3, 10]. This in-
formation can be used for improving the performance of
a host of methods which suffer from the dimensionality
curse. One such example is an application of a gen-
eralized projected clustering technique [3] to Local Di-
mensionality Reduction (LDR) [13]. It has been shown
in [13] that the LDR method provides a decomposition
of the data which can be used to create an effective
high dimensional index. The technical challenge in re-
defining applications is to do so in accordance with the
needs of a given user; a task which requires considerable
understanding of the application at hand.

A second approach is to re-design the distance
function itself. Often the sparsity of high dimensional
data has been understood in the context of particular
distance norms such as the Lp-norm. An additional
understanding of the nature of the L,-norm may
be found in [1]. For many high dimensional data
mining methods, the choice of the distance function
is not pre-defined, but is chosen heuristically. There
is not much literature on how distance functions
should be re-designed with increasing dimensionality
for arbitrary applications. High dimensional index
structures and algorithms use the euclidean distance
metric as a natural extension of its use for spatial
applications. The results in [6] show that such functions
may be meaningless under many conditions for high
dimensional applications.

On the other hand, for many other high dimensional
domains of data such as Information Retrieval (IR),
techniques have been proposed to measure similarity
among objects based on the aggregate behavior of the
data set. It is a difficult task to design such distance
function for arbitrary applications, since designing dis-
tance function even for a specific domain of data such
as IR has intrigued researchers over three decades [14].
Such a design in the IR community has been achieved
by considerable testing and understanding of the par-
ticular characteristics of the data which are the most
meaningful indicators of similarity. Unlike IR appli-
cations, we cannot use specific information about the
“typical” nature of the data for arbitrary applications;

therefore, for these cases, designing distance functions
is an even more difficult task. The technical challenge of
this general approach is to be able to design the distance
function based on the overall behavior of the particular
data set under consideration.

Thus, locality-specific projection methods [2, 3, 10,
13] provide insight about the behavior of a given data
set; whereas designing effective distance functions for a
given data set requires insight about its behavior. In
the next section, we will provide some general insights
into the design of meaningful high dimensional distance
functions.

3 Desiderata for Dimensionality
Resistant Distance Functions

One of the helpful observations from the previous
section is that the reasons for the failure of high
dimensional algorithms both from the performance and
meaningfulness perspective are rooted in the same
reason of poor discrimination between the furthest
and nearest neighbor in high dimensional space. This
also means that by designing dimensionality resistant
distance functions we may be able to design methods
which not only provide superior performance but are
also able to provide results which are superior from
a qualitative perspective. One of the fatal flaws in
the design of high dimensional index structures and
algorithms is that they have generally relied on the
use of the L,-norm as the default method for building
index structures and algorithms. This assumption is
perhaps rooted in the initial development of index
structures for spatial applications in which the Lo
norm has special interpretability in 2 or 3-dimensions.
However, this interpretability is not really relevant
for high dimensional applications. For many carefully
studied domains of data such as information retrieval
and categorical data, the distance functions are usually
based on the statistical aspects of the corresponding
feature vectors.

The design of distance functions for well studied data
domains such as Information Retrieval provides some
useful hints for the high dimensional case. We list some
of the practical desiderata for effective dimensionality
resistant distance functions below.

(1) Contrasting: Straight-forward extensions of the
L,-norm are disadvantageous from a practical perspec-
tive because they lead to the non-contrasting behavior
of the distances. This non-contrasting behavior is be-
cause two high dimensional objects are unlikely to be
very similar in all the dimensions. The averaging ef-
fects over the different dimensions may lead to a lack of
contrast. A different way of developing contrasting dis-
tance functions is to make them sensitive to the number
of dimensions on which two records are similar. This
is not necessary to implement for low dimensional ap-



plications; for such cases, the L,-norm is a reasonable
solution. We will see that it is possible to design dimen-
sionality sensitive distance functions which automati-
cally adjust the similarity calculation mechanism in a
way so as to continue to be contrasting with increasing
dimensionality.

(2) Statistically Sensitive: It is very rare that
the data is uniformly distributed along any given
dimension. Some of the values may be more sparsely
populated than others. This behavior is commonly
noted in Information Retrieval applications in which
most attribute values (corresponding to frequency of
presence of words from a large statistical collection)
are zero. This is one domain in which the design of
effective distance functions has been very well studied
[14].  Distance functions such as dice, cosine or
jaccard coefficient [14] do not treat the attribute values
uniformly. For example, for a given pair of documents
only the attributes on which both documents have
non-zero values (words which are present rather than
absent) are relevant. This is because the sparsely
present attributes have much smaller frequency of
co-occurrance, and are therefore statistically more
relevant to the recognition of similarity. Furthermore,
even among these attributes, some are weighted more
highly than others based on the relative presence
of the values in the entire data set [14]. In fact,
the problem of term-frequency and inverse-document-
frequency normalization has been well studied and
documented as an important problem with considerable
qualitative effects on distance functions [14] in the IR
domain.

There is no reason why such methods may not be
generalized to arbitrary data sets. The use of statistical
properties of distance functions masks out the noise
effects in high dimensionality and is able to magnify
the contrast by only using the statistically significant
values.

(3) Skew Magnification: In high dimensional
space, many of the attributes are correlated with one
another. These correlations may be used in order to
magnify the effect of high dimensional skews in mea-
suring similarity. The use of inter-attribute correlations
has been used for designing distance functions in cat-
egorical domains where there is no natural ordering of
attribute values. In such cases, the use of inter-attribute
summary information provides considerable insight into
similarity of objects by examining whether commonly
co-occurring inter-attribute values are present in the
two objects [9].

In this paper, our motivation for incorporating the
concept of inter-attribute similarity to arbitrary data
sets is slightly different; we would like to use the inter-
attribute similarity in order to increase the level of dis-
crimination of the proximity calculation. The use of ag-

gregate behavior of the data in terms of inter-attribute
correlations becomes more important for high dimen-
sional data, where there may be considerable redundan-
cies, dependencies and relationships among the large
number of attributes. The use of straightforward lin-
early separable distance functions such as the L,-norm
may be a very poor representation of proximity in high
dimensional space, as most of the proximity informa-
tion may be hidden in the aggregate summary behavior
of the data.

(4) Compactness: An important practical require-
ment for distance function calculation is that of com-
pactness. This refers to the fact that a distance function
can be calculated efficiently in terms of time and space
requirements. This is quite important, since we advo-
cate the use of statistical information about the data
set. Thus, such information needs to be maintainable
and usable in a compact way. Also, the distance func-
tion calculation may be a bottleneck operation in many
algorithms. Therefore, efficiency in such calculations is
paramount to the success of such methods from a per-
formance perspective.

In order to create a distance function which satisfies
the needs discussed above, we will illustrate a function
which provides greater weightage to proximity on a
given dimension rather than lack of it. Even though
this way of measuring similarity leads to a loss of
information, (because many dimensions are not used
in the similarity calculations) it is very effective at
masking out the noise effects in high dimensionality.
Furthermore, this reduction of noise effects leads to
qualitative improvements which are sufficient to offset
the corresponding loss of information.

4 Sample Distance Function

In this section, we will discuss a simple distance function
for high dimensional objects. We do not necessarily
claim that this technique is the optimum one from any
perspective; however our intention is to show how a very
naive application of the above-mentioned techniques
and principles can substantially reduce the effect of the
dimensionality curse for high dimensional applications.

One of the reasons for the lack of discrimination
between the nearest and furthest neighbor is the fact
that for every pair of points there are dimensions with
varying distances to the corresponding values in the
target. The dominant components of distance functions
such as the Euclidean metric are the dimensions on
which the points are farthest apart; for the particular
case of high dimensional data, this results in very poor
measurement of similarity. This is because when the
dimensionality is high, even the most similar records
are likely to have a few feature values which are well
separated because of noise effects and sparseness of the
data; the exact degree of dissimilarity on these few noisy



dimensions will determine the nearest neighbor to the
target. In general, for a given feature, we expect the
values for two randomly picked records to be reasonably
well separated (average separation along that range);
there is no interesting statistical information in this
fact. For distance functions such as the L,-norm, the
results of [6] show that the averaging effects of the
different dimensions (many of which are noisy) start
predominating with increasing dimensionality.

A different and complementary view of similarity
would be one in which a predefined proximity threshold
is defined for each dimension, and the overall similarity
is defined both by the number and quality of similar-
ity along the dimensions on which the two records are
more proximate than this threshold. Thus, the sim-
ilarity function is directly affected by the number of
dimensions which have this interestingly high level of
proximity, and beyond a certain quality threshold, the
exact degree of dissimilarity on a given dimension is not
considered relevant. Since the meaningfulness problem
is sensitive to the data dimensionality, the criterion for
picking this proximity threshold is also dependent on
the data dimensionality.

4.1 Dimensionality Resistant Distance
Functions by Proximity Thresholding

In order to perform the proximity thresholding, we
discretize the data into several ranges. Specifically, we
assume that each dimension is divided into k4 equi-
depth! ranges. The reason for picking equi-depth ranges
is that it provides better normalization in terms of
distinguishing the records with respect to the aggregate
data set behavior. Each of these is a contiguous range
of values, such that a given range contains a fraction
1/kq4 of the total number of records. Specifically, we
denote the jth range for dimension ¢ by R[i,j]. In
order to emphasize the sensitivity of k; on the data
dimensionality, we have used the dimensionality d in
the subscript.

Let X = (x1,...2¢) and Y = (y1,...yq) be two
records. Then the set of dimensions on which the
two records are similar are those which share the same
ranges. Thus, for dimension i, if both z; and y; belong
to the same range R[i, j], then the two records are said
to be in prozimity on dimension i. The entire set of
dimensions on which the two records lie in the same
range is referred to as the prozimity set. Let S[X,Y, k4]
be the proximity set for two records X and Y for a given
level of discretization. Furthermore, for each dimension
i € S[X,Y, kq], let m; and n; be the upper and lower
bounds for the corresponding range in the dimension ¢
in whi ch the records X and Y are in proximity to one

In equi-depth ranges, each range contains an equal number
of records. In equiwidth ranges, each range contains a similar
length of values covered.

another. Then, for a given pair of records X and Y and
a level of discretization kg, the similarity between the
records is given by:

m; — n;

|' p-l 1/p
PIDist(X,Y, ky) = > <1 - u)
L’es[X,Y,kd] J
(1)

Note that the value of the above expression will
vary between 0 and |S[X,Y k4|, since each individual
expression in the summation lies between 0 and 1.

The above use of the similarity function guarantees
a non-zero similarity compon ent only for those dimen-
sions, in which the two records are proximate enough.
The use of equi-depth partitions ensures that the prob-
ability that two records have a component in the same
partitions given by 1/k4. Thus, on the average the
above summation is likely to have d/k; components.
For more similar records, the number of such dimen-
sions will be greater, and each such individual compo-
nent is also likely to contribute more to the similarity
value. The above function leads to the ignoring of the
exact degree of dissimilarity on the distant dimensions:
we see from the empirical tests in [4], that for the case of
high dimensional data this creates a sparsity/noise re-
duction which outweighs the effects of information loss.

4.2 Picking the Proximity Threshold

We would like to pick the proximity threshold in a way
that the meaningfulness of the problem is retained; yet
the amount of information loss is minimal. Thus, kg
should be picked “just large enough” in order to retain
meaningfulness with increasing dimensionality. An in-
teresting mathematical analysis is provided in [4], which
shows that for the worst kind of (uniformly distributed)
data, it suffices to pick kq = [6d]. This means that the
distance function is increasingly stringent in discarding
dimensions with increasing dimensionality. The idea
is to provide a measure of the number of dimensions
on which the records are close enough to make statis-
tical sense based on a certain discretization threshold;
higher thresholds provide better quality bounds for each
dimension, but fewer percentage of dimensions. The
theoretical results of [4] seem to indicate that in high
dimensional space it is better to aim for higher qual-
ity bounds for each dimension; but a smaller percentage
(not number) of retained dimensions. This results in
more meaningful similarity computations for high di-
mensional problems.

An interesting aspect of this distance function is
the nature of its sensitivity to data dimensionality;
the choice of k; ensures that for low dimensional
applications it is somewhat similar to the Lj,-norm;
whereas for high dimensional applications, it behaves
somewhat similar to IR-like distance functions in giving



greater weightage to those dimensions on which the
records are most similar.

4.3 Use of Inter-Attribute Correlations

The use of inter-attribute correlations in order to mea-
sure similarity of categorical attributes has been dis-
cussed in [9]. This technique is also relevant for high
dimensional data where considerable understanding of
the trends in the data may be used for determining sim-
ilarity. For example, the technique of generalized pro-
jected clustering [3] (which is an application-redefinition
method) uses local correlations in a very direct way in
order to determine similarity. Such local correlations
can also be hidden in the distance function. An exam-
ple of such a function is provided in [4].

5 Merits of Distance Function and
Application Re-definitions

It has been shown in [4] that the above distance function
can be used in conjunction with an index representation
effectively so that the performance of the technique
improves (in terms of fraction of data accessed) with
dimensionality. As evident from detailed empirical
results in the same paper; the nearest neighbors are
qualitatively more meaningful as well. This method
proposes a significant shift from most of the known
indexing structures such as the X-Tree, VA-File, SR-
Tree, and TV-Tree [5, 8, 11, 12], all of which are
dependent on pre-existing distance functions such as
the L,-norm.

Distance function re-definition is very useful in cases
when an application or algorithm is very dependent
on the use of a similarity calculation subroutine; in
other cases, application re-definition techniques similar
to those discussed in [2, 3, 10, 13] may provide
deeper insights into the localized behavior of the
data. The relative merits of these two techniques are
dependent on specific situations and needs; however,
the general approach of re-designing distance functions
and distance based applications for high dimensional
problems is a promising line of future research.
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