Using quantitative information for
efficient association rule generation

B. Possas W. Meira Jr.

M. Carvalho R. Resende

Department of Computer Science
Federal University of Minas Gerais
Belo Horizonte — MG — Brazil
{bavep,meira,mlbc,rodolfo}@dcc.ufmg.br

1 Introduction

The problem of mining association rules in categor-
ical data presented in customer transactions was
introduced by Agrawal, Imielinski and Swami [2].
This seminal work gave birth to several investiga-
tion efforts [4, 13] resulting in descriptions of how
to extend the original concepts and how to increase
the performance of the related algorithms.

The original problem of mining association rules
was formulated as how to find rules of the form set;
— sety. This rule is supposed to denote affinity
or correlation among the two sets containing nom-
inal or ordinal data items. More specifically, such
an association rule should translate the following
meaning: customers that buy the products in set;
also buy the products in sets. Statistical basis is
represented in the form of minimum support and
confidence measures of these rules with respect to
the set of customer transactions.

The original problem as proposed by Agrawal
et al. [2] was extended in several directions such as
adding or replacing the confidence and support by
other measures, or filtering the rules during or after
generation, or including quantitative attributes.

Srikant e Agrawal [16] describe an new approach
where quantitative data can be treated as categor-
ical. This is very important since otherwise part of
the customer transaction information is discarded.

Whenever an extension is proposed it must be
checked in terms of its performance. The algorithm
efficiency is linked to the size of the database that
is amenable to be treated. Therefore it is crucial to
have efficient algorithms that enable us to examine
and extract valuable decision-making information
in the ever larger databases.

In this paper we present an algorithm that can
be used in the context of several of the extensions
provided in the literature but at the same time pre-
serves its performance, as demonstrated in a case
study. The approach in our algorithm is to explore

multidimensional properties of the data (provided
such properties are present), allowing us to com-
bine this additional information in a very efficient
pruning phase. This results in a very flexible and
efficient algorithm that was used with success in
several experiments using categorical and quantita-
tive databases.

The paper is organized as follows. In the next
section we describe the quantitative association rules
and we present an algorithm to generate it. Sec-
tion 3 presents an optimization of the pruning phase
of the Apriori [4] algorithm based on quantitative
information associated with the items. Section 4
presents our experimental results for mining four
synthetic workloads, followed by some related work
in Section 5. Finally we present some conclusions
and future work in Section 6.

2 Quantitative Rules

Items found in relational tables have many different
attributes. These attributes may be either quanti-
tative (such as age or salary) or categoric (such as
zip code, a boolean value or a license plate number).
In this work, any valued attribute will be treated as
quantitative and will be used to derive the quanti-
tative association rules presented in this section.

2.1 Formal Definition

Let A = {a1, ag, ..., ap} be the set of attributes
from a table and V' the set of non-negative values
for an attribute, and V, be the set of values for an
attribute a. We define an item ¢ as the pair (a,q,),
where a is an attribute and ¢, € V,, its quantitative
value. An itemrange is the contiguous allowable
range for an attribute a, represented by a tuple (a :
lo — ho), where I, € V,, hg € Vg, and I, < h,
are its low and high limits. We observe that, for
each attribute, only a single range is allowed. It
may be interesting to consider the case of multiple
non-overlapping ranges but this is for further work.

Let us represent a transaction T as the set {t,
t2, ..., tn} Of its items and by D the set of all trans-
actions. A transaction T satisfies a given set of
itemranges I, if for each {ay : I, — h,) € I there ex-
ists an (ar,q,) € T withar=arel, < qu < hg. A
quantitative association rule is an expression of the
foorm X - Y, where X CL,LYCI, XNY =0 and
I is a set of itemranges. As defined in [2], a rule
X — 'Y is valid for the transaction set D with con-
fidence c if ¢% of the transactions in D that satisfy
X also satisfy Y. The rule X — Y has support s in
the transaction set D if s% of the transactions in D
satisfy X UY . Given a transaction set D, the quan-
titative association rule generation problem is the
problem of generating all rules that have support
and confidence greater than some given constants,
denoted by minsupp and minconf, respectively.

As an example of application of this rule, con-
sider the supermarket purchase analysis problem.
In this model, a transaction is a set of items bought
by a customer. A rule may be: “80% of the peo-
ple who bought between 1 and 5 beers also bought
between 2 and 4 bags of potato chips”. This infor-
mation may be strategic when investing in a new
advertisement campaign or designing a new layout
for the store.

For the sake of this presentation, the solution of
the quantitative association rule generation prob-
lem is divided into three steps: The first step con-
sists of enumerating the support for the itemranges
sets. The second step consists of finding all the
itemrange sets that have support values greater
than minsupp (these are the frequent or large sets).
The last step consists of generating the association
rules derived from the frequent sets found in the
second step. These steps are the same those of the
non-quantitative procedure, but the extra informa-
tion about the quantities induces an additional di-
mension on the generated rules, which usually in-
creases the rules’ information content.

2.2 Generating Quantitative Rules

In this subsection we describe the algorithm for gen-
erating quantitative association rules. The starting
point of our algorithm is counting the itemranges
in the database, in order to determine the frequent
ones. These frequent itemranges are the basis for
generating higher-order itemranges using an algo-
rithm similar to Apriori.

We consider the size of a transaction as the
number of items that it comprises. We define as
a k—itemset a set of items of size k and denote fre-
quent (large) itemsets by L, and candidate itemsets
(possibly frequent) Cy. A j—rangeset is a a set of j
itemranges, and each k—itemset has a j —rangeset
that stores the quantitative rules of the itemset.

During each iteration of the algorithm, we use
just the frequent sets from the previous iteration
to generate the candidate sets and check whether
their support is above the threshold. The set of
candidate sets found is pruned by a strategy that
discards sets which contain infrequent subsets. The
algorithm ends when there are no more candidate
sets to be verified.

Once we determine all frequent sets and their
quantitative ranges, the association rules are gener-
ated. The general outline of the algorithm is pre-
sented in Figure 1. The syntax and semantics of the
primitives employed in our algorithm are similar to
other approaches in the literature. A short descrip-
tion of the data structures is presented in the next
subsection.

L1 = {frequent 1 — itemsets};
for (k = 2; Ly # 05 k++) {
Cj, = generate_candidates(Lg_1);
V transactions T € DB
V subsets t € T
if (¢ € Cx: ¢ is valid in t) then c.count + +;
Ly = {c € Cx | c.count > minsup};

V Ly, k> 2
0. generate_rules(Ly, L);

SLPTDOUE W

Figure 1: Quantitative Apriori Algorithm

2.3 Data structures

We use two data structures for generating quanti-
tative association rules: trees of sets and intervals.
The trees of sets keep the itemsets, as the origi-
nal Apriori does. This tree is divided into levels
and each level contains one or more lists of nodes.
Each node represents an itemset and stores the item
identifier and the occurrence counter of the itemset.
The itemset is composed by the item stored in the
node itself and the items stored in all of its ancestor
nodes. Thus, k-itemsets are stored at level k.

Fach node in a tree of sets also contains an in-
terval tree. Interval trees are similar to KD trees [8]
and store itemranges information, such as their oc-
currency frequency. Furthermore, they are binary
trees where each node contains a set of itemranges,
a rangeset, an occurrency counter, and the tree dis-
criminant. This tree satisfies two properties: (i)
ancestor accumulation: the occurrence counter
stored in a node is equal to the sum of the counters
of all its child nodes and (ii) ancestor inclusion:
the itemranges of the child nodes are sub-intervals
of the itemranges of the parent node.

The discriminant of a node is an item a of its
rangeset and a value d, € V,, that is, the quan-
tity acquired of the item. The discriminant plays
a role similar to a node key in a binary search
tree: the left sub-tree contains itemranges where

all amounts are less than d,, while the right sub-
tree contains itemranges where all acquisition val-
ues are equal or greater than d,. In order to find
a node in the interval tree, we start from the root
and the path taken from each node is defined by the
discriminant item, checking whether the item quan-
tity is smaller than the discriminant quantity. An
example of an interval tree can be seen in Figure 2.
In this figure the itemranges are represented inside
the node and the occurrence counter is represented
by “S: n”, where n is its value. The discriminant
dimension of a node is chosen based on the biggest
distance among the items values being inserted and
the respective intervals lengths in the rangeset.

513‘/\:1 B:Z‘ ‘A:l B:3-4‘S:2

Figure 2: Interval tree for itemset A B

Another property of KD trees that also holds
for interval trees is that the counters of all leaf
nodes are bound to a capacity specified at build-
ing time. Thus, whenever the capacity of a node n
isreached, an item is chosen as discriminant and the
two children of n are created and the rangesets of
the children nodes are based on the discriminant.
As a consequence, the format of the interval tree
is a function of the frequency distributions of the
various items and their discriminants.

3 Improving Apriori

In this section we describe how quantitative rules
are used for making the generation of association
rules more efficient. More specifically, we make the
candidate pruning phase more efficient by reducing
the number of candidates that are generated to fur-
ther verification.

The original Apriori approach prunes a candi-
date itemset C of size k¥ whenever any of its subsets
of size k — 1 are not frequent (lines 1..4 of the algo-
rithm in Figure 4). Although this approach is safe
in the sense that no large itemsets are mistakenly
discarded, it is still possible to generate candidates
that later show to be not frequent, because the over-
lap among the transactions accounted in the k — 1
itemsets is not large enough for guaranteeing the
support to C.

Our strategy, as mentioned, is to use quanti-
tative information to estimate more precisely this

1. A 1 B 1 CcC 3 D 4
2. A 2 B 1 c 2 - -
3. A 3 B 2 - - D 4
4. A 2 B 3 C 3 - -
5 A 2 B 1 - - - -
6. A 3 B 2 C 3 - -
7. A 4 - - - - D 4
8. - - B 2 C 1 D 3
9. - - B 4 C 3 - -
10. - - B 1 - - D 1

Figure 3: Example of a Transaction Database

overlap in terms of transactions. For instance, if
we consider the transaction database from Figure 3
and a support threshold of 3, we find five frequent
2-itemsets A B, A C, A D, B C, and B D, with
supports 6, 4, 3, 6, and 4, respectively. The
original Apriori approach generates two candidate
itemsets, A B C and A B D, but the verification in
the transaction database reveals that only A B C
is frequent. If we verify the interval trees for A B,
A D, and B D in Figure 5, we are able to discover
that A B D is unfeasible before the counting phase,
as follows. The interval (A : 4 D : 4) does not
match any interval in the tree for A B, since there
is no node where A is associated with the quantity
4. Thus, the transactions accounted in A D are not
all accounted in A B, as we can see in Figure 3,
where transaction 7 does not include B. In this
case we say that A B D is unfeasible with respect
to A D.

AB A D

S:6 |A13

N

s: 2

B:1-3 A:l-4 D: 4

s:4 (Ai12 B:13 A3 B:2

B D
sS4 |B:12 D14

N

s2 |[B1 D14 s2 B2 D34

Figure 5: Interval trees for A B, A D, and B D.

si2 | A1-3 D4

We developed an algorithm that generalizes this
procedure and enhances significantly the pruning
process. There are two basic issues in implementing
the strategy described: (1) how to order intervals
for sake of comparison, (2) how to test the overlap
among them.

We choose intervals based on a greedy strategy.
Since our goal is to prune a candidate k-itemset
as early as possible, we focus on the (k-1)-itemset
with the smallest support, which presumably is the
easiest to be considered unfeasible. We start by
checking leaves that have the smallest ranges in all
dimensions, which we call rangeset coverage.

We define that two rangesets overlap (<) when

1. for each candidate C

2. enumerate the set P of k — 1 itemsets of C

3. if Ip € P|support(p) < minsupp

4. then C is unfeasible

5. else

6. Find prmin |Pmin € P and Ap|support(p) < support(Dmin)
7. V leaves I of P in

8. overlapped_support = support(l)

9. for each p € P and p # pmin

10. K is the set of all leaves k where k < [

11. if overlapped_support > Z support(k)

12. then overlapped_support = Z support(k)

13. if (overlapped_support == 0)

14. then support(pmin) = support(Pmin) — support(l)
15. if (support(pmin) < minsupp)

16. then C is unfeasible

Figure 4: Quantitative Pruning Algorithm

any of their itemranges overlap. More specifically,
given two rangesets R = ry,r3,...,r, and § =
$1,82,...,8m, where 7; (and s;) are itemranges We
say that R < S if Ir,s|r € R,s € S,74 = 84,71 <=
Sp Vs <=ryp.

The starting point of the algorithm presented
in Figure 4 represents the original prune approach,
where a candidate itemset C' is unfeasible if any of
its subsets of size k — 1 are not frequent (lines 2..4).
The second phase explores the quantitative infor-
mation present in the interval trees (lines 5..16).
The first step of our prune approach finds the k — 1
subset (pmin) with the smallest support value (line
6) for further evaluation in the intervals trees of all
other k — 1 subsets. This evaluation takes into ac-
count all interval nodes (I) from py;p, (line 7). The
initial overlapped_support is the support for [it-
self. We then verify whether this support is valid
across all £ — 1 subsets. Notice that at this level
our algorithm is also greedy, since we start with the
subset with minimum support and verify whether
it holds for all subsets. Thus, for each node consid-
ered, the algorithm determines which leaves (k) in
the remaining interval trees overlap with the leaves
in the interval tree associated with p;, (line 10).
We then update overlapped_support if the sum of
the supports for all k¥ is smaller than its current
value (lines 11..12). We should emphasize that this
sum of supports is an upper bound on the support
that [may have in p and, if it the bound is smaller
than the current overall support, then it becomes
the new support for that itemrange. If, after ver-
ifying all nodes, the resultant overlapped_support
is 0, the overall support for pm;, is decremented
by the support of (lines 13..14), meaning that [
comprises an itemrange that is not present in all
subsets needed for the new candidate. Finally, if
the support for p,,;, after the feasibility verifica-
tions is smaller than minsupp then C' is assigned as
unfeasible (lines 15..16).

4 Experimental Results

4.1 Experiments with Synthetic Data

In order to evaluate the efficiency of our algorithm
in pruning the candidate sets, we executed the algo-
rithm on transaction databases generated syntheti-
cally, which simulate real workloads. The generator
of workload takes into account correlations among
items acquired by the same customer, that is, the
probability of the occurrence of frequent itemsets
which may assume four possible distributions: (1)
normal (nor), (2) bimodal (bim), (3) exponential
(exp), and (4) random (ran). The transaction sizes
varied from 10 to 52 items, and the average size of
the largest potentially frequent itemset is 10. To
create a workload, our generator program takes five
parameters: T — number of transactions, M — av-
erage size of transactions, L — average size of the
maximal large itemsets, I — number of items, and
D — distribution of occurrences of large itemsets.
Our evaluation is based on two sets of workloads.
The first (w_trans) contains workloads with vary-
ing number of transactions (from 10000 to 50000)
and fixed number of itens (500), aiming to quantify
the scalability of the algorithm, while the second set
(w_items) comprises workloads with varying num-
ber of itens (from 500 to 2500) and fixed number of
transactions (50000), as a measure of the complex-
ity of the workload. The remaining parameters for
both sets of workloads are as follows: the average
size of transactions varied from 30 to 40; the aver-
age size of the maximal large itemsets is 10; and all
four distributions of occurrences aforementioned.
We evaluate our pruning algorithm by consid-
ering the number of frequent itemsets in each iter-
ation, the number of candidate itemsets (with and
without pruning) and the hit ratio between candi-
date itemsets and frequent itemsets. We also eval-
uated the elapsed computational time for executing

‘Workload Total Number of Frequent Sets

T D 1 2 3 ! 5 6 7 8 9 [10
50000 | bim | 14436 | 500 | 2572 | 4164 | 3108 | 1939 | 1047 | 669 | 346 | 84 7
50000 | exp 10888 | 500 | 1873 | 3093 | 2343 1438 793 | 511 | 267 | 64 6
50000 nor 12842 | 493 | 2260 | 3691 | 2747 | 1697 951 | 608 | 312 | 76 7
50000 ran 10564 | 500 | 1893 | 3010 | 2202 | 1369 774 | 490 | 258 | 63 5

Table 1: Frequent sets in the Workload

the algorithm under different workloads and com-
pared execution times that employed or not our
pruning strategy. We illustrate these metrics by an-
alyzing the results from four workloads (T=50000,
I=500, M=30, L=10, and D = {bim, exp, nor,
ran}), considering a 10% support. The number of
frequent itemsets at the end of each iteration for
these workloads and support are shown in Table 1.

‘Workload Pruning | No Pruning Gain
T D
50000 [bim 18081 21559 16.13%
50000 | exp 14697 16194 9.24%
50000 [nor 15996 19082 16.17%
50000 | ran 14191 15623 9.17%

Table 2: Total number of candidate itemsets

We start our evaluation by verifying the number
of candidate itemsets generated during the execu-
tion of the algorithm. These data are shown in Ta-
ble 2, where we can see that our pruning algorithm
reduced the overall number of candidate itemsets
by up to 16%. In fact, if we consider just the item-
sets greater than 2, which are effectively pruned,
the gains are over 20% for some workloads.

The effectiveness of our algorithm increases with
the size of the itemsets being pruned, as we can see
in Table 3, where we compare the number of can-
didate itemsets per iteration of the algorithm. We
can see that our approach reduces the number of
itemsets by up 30%. Furthermore, our pruning al-
gorithm detected, in some cases, that all unfeasible
candidate itemsets, reducing the overall number of
iterations (e.g., 10-itemsets in the exponential and
in the random workload).

We also evaluated the “hit ratio” of our algo-
rithm, that is the ratio between the number of fre-
quent itemsets and the number of candidate item-
sets found by our pruning algorithm. We can see in
Table 4 that the hit ratio for itemsets greater than
2 is above 64% in all cases, reaching 100% in some
cases. For instance, in both the exponential and
random workloads, the pruning algorithm identified
as candidates exactly the frequent 10-itemsets.

Table 5 shows the elapsed time for generating
rules using the workload described. We can see that
our pruning algorithm enhances the performance of
Apriori in all cases, ranging from 16.5% to 23.9%,
providing an average improvement of 21.2%. We
should notice that the pruning operations never in-

creased the execution time of the algorithm. In fact,
our measurements show that these operations rep-
resent a very small fraction of the overall execution
time (which is dominated by itemset counting), be-
ing limited to few seconds per execution.

‘Workload Pruning | No Pruning Gain
T D
50000 [bim [30405.8 39958.7 23.91%
50000 | exp | 22376.5 28240.7 20.77%
50000 | nor 26865.4 35106.6 23.48%
50000 | ran 23416.1 28113.4 16.71%

Table 5: Elapsed time for generating rules (s)

4.2 Mining Web Logs

In order to confirm the performance trends we ob-
served using synthetic data, we experimented with a
real-life dataset: a web log database obtained from
an actual virtual bookstore. We present the results
of these experiments in this section.

The data consist of the set of requests to a vir-
tual bookstore over an one-week period. We group
the requests into sessions, so that each session com-
prises all requests (that is, services such as browse,
search, and pay) for a given user and its frequency,
which is its number of occurrences. For sake of ap-
plying the quantitative Apriori algorithm, each ses-
sion becomes a transaction and the resultant rules
are common user behaviors that may be used for
workload characterization and personalization. The
size of the web log is 6 MB and there is a total
of 153 items, representing different requests, and
35887 sessions with an average size of 15.

The elapsed time for generating rules with our
pruning strategy was 18.5% faster than the basis
quantitative algorithm (10% support). The average
hit ratio of the algorithm was 77.6% and its value
per itemset size reach from 48.1% in the worst case
(1-itemsets) and 91.7% in the best case (3-itemsets).
Notice that the gains are similar to those observed
in synthetic workloads.

4.3 Algorithm Scalability

As described previously, we evaluate the scalabil-
ity of our algorithm through two sets of workloads
(w_trans and w_items). Table 6 shows the per-
formance gains (the ratio between the overall exe-
cution times of the quantitative Apriori algorithms

Workload Prune | Total | Candidates per itemset size |
T D [1] 2] 3] T] 5 6] 7] 8] 9]10|

[50000 [bim | Y [18081 [500 | 3976 | 5055 | 3764 | 2288 [1247 [753 | 396 | 94 | 8 |
[50000 | bim | N | 21559 | 500 | 3976 | 6354 | 4688 | 2896 | 1531 | 971 | 510 | 123 | 10 |
[50000 | exp | Y [14697 [500 | 2896 | 4182 | 3122 | 1030 | 1009 | 637 [335 | 80 | 6 |
[50000 | exp | N | 16194 | 500 | 2896 | 4719 | 3534 | 2147 | 1160 | 742 | 393 | 94 | 9 |
[50000 | nor | Y [15096 | 500 | 3432 | 4448 | 3209 | 1092 | 1154 | 705 | 372 | 86 | 8 |
[50000 | nor | N [19082 | 500 | 3432 [5591 [4108 [2522 | 1417 | 910 | 479 [113 [10 |
[50000 [ran | Y [14191 [500 | 2892 | 3928 | 2972 | 1858 | 996 [630 | 327 [83 | 5 |
[50000 | ran | N | 15623 | 500 | 2892 | 4433 | 3364 | 2067 | 1146 | 734 | 383 | 97 | 7 |

Table 3: Number of candidates per itemset size

‘Workload Hit Hit Ratio per Itemset Size (%)

T D | Ratio T 2 3 1 5 6 7 8 9 10
50000 | bim | 74.75 | 98.58 | 48.14 | 79.49 | 79.91 | 82.62 | 78.65 | 84.05 | 80.77 | 86.84 | 85.71
50000 | exp | 65.02 | 100.00 | 45.41 | 78.60 | 78.89 | 82.00 | 80.90 | 87.44 | 85.55 | 88.10 | 100.00
50000 | nor | 75.44 | 100.00 | 47.23 | 69.50 | 65.03 | 64.28 | 71.32 | 71.43 | 73.26 | 68.25 | 85.71
50000 | ran | 65.67 | 100.00 | 45.38 | 64.79 | 66.75 | 65.79 | 72.76 | 75.34 | 74.53 | 75.00 | 100.00

Table 4: Pruning Hit Ratio for Synthetic Workloads

employing or not our pruning strategy) for work-
loads comprising from 10000 to 50000 transactions.
We can observe that the gain usually increases with
the number of transactions, however, there are some
exceptions as a consequence of the remaining work-
load parameters being the same in all cases.

Dist. Number of Transactions

10000 20000 30000 40000 50000
bim 20.99% | 22.63% | 19.49% | 24.93% | 23.91%
exp 10.90% 11.57% | 10.93% 10.38% 10.77%
nor 17.86% | 15.77% | 20.80% | 19.24% | 23.48%
ran 13.83% | 13.72% | 12.44% | 15.21% | 16.71%

Table 6: Time Gain for Generating Rules (w_trans)

Table 7 show the gains, in terms of execution
times, for varying number of items per transaction.
Again, the gain usually increases with the number
of items in the transaction. We can explain this
trend by the fact that the support is the same for
all experiments, and a larger number of items means
that each item is less frequent on average.

Dist. Number of Items

500 1000 1500 2000 2500
bim | 23.91% | 25.63% | 29.49% | 32.93% | 35.91%
exp 10.77% | 14.57% | 17.99% | 19.98% | 21.07%
nor 23.48% | 25.75% | 28.30% | 32.14% | 34.52%
ran 16.71% | 19.27% | 22.11% | 25.01% | 28.91%

Table 7: Time Gain for Generating Rules (w_items)

5 Related Work

There are several proposals for mining association
rules from transaction data. Some of these pro-
posals are constraint-based in the sense that all
rules must fulfill a predefined set of conditions, such
as support and confidence [1, 3, 7]. The second
class identify just the most interesting rules (or op-
timal) in accordance to some interestingness met-

ric, including confidence, support, gain, chi-squared
value, gini, entropy gain, laplace, lift, and convic-
tion [17, 6, 11]. However, the main goal common
to all of these algorithms is to reduce the number
of generated rules. We extend the first group of
techniques since we do not relax any set of condi-
tions nor employ a interestingness criteria to sort
the generated rules.

In this context, many algorithms for efficient
generation of frequent itemsets have been proposed
in the literature since the problem was first intro-
duced in [2]. The DHP algorithm [13] uses a hash
table in pass k to perform efficient pruning of (k+1)-
itemsets. The Partition algorithm [15] minimizes
I/O by scanning the database only twice. In the
first pass it generates the set of all potentially fre-
quent itemsets, and in the second pass the sup-
port for all these is measured. The above algorithm
are all specialized techniques which do not use any
database operations. Algorithms using only gen-
eral purpose DBMS systems and relational algebra
operations have also been proposed [9, 10].

There are some other efforts that exploit quan-
titative information present in transactions for gen-
erating association rules. In [16], the quantitative
rules are generated by discretizing the occurrence
values of an attribute in fixed-length intervals and
applying the standard Apriori algorithm for gen-
erating association rules. However, although sim-
ple, the rules generated by this approach may not
be intuitive, mainly when there are semantic in-
tervals that do not match the partition employed.
Other authors [5, 12, 18] proposed novel solutions
that minimize this problem by considering the dis-
tance among item quantities for delimiting the in-
tervals, that is, their “physical” placement, but not
the frequency of occurrence as a relevance metric.
Our quantitative approach was introduced in [14]

and a quantitative interestingness metric was also
presented.

6 Final Remarks

In this paper we addressed the problem of minimiz-
ing the number of candidate sets that are consid-
ered while generating association rules. We achieve
such reduction by taking into consideration quan-
titative information that is usually discarded, since
traditional association rules focus just on qualita-
tive correlations.

More specifically, our approach reduces the num-
ber of candidate sets generated by taking into ac-
count the quantitative information associated with
each item that occurs in a transaction. This in-
formation allows us to make a better estimation of
which candidate itemsets are feasible. We evalu-
ated our approach using four synthetically gener-
ated workloads, reducing not only the number of
sets generated but also the overall execution time
of the algorithm.

Quantitative association rules can be used in
several domains where the traditional approach is
employed. The unique requirement for such use is
to have a semantic connection between the compo-
nents of the item-value pairs. We will investigate its
use on other applications, such as discovering web
access patterns on web logs, predicting web users
surfing paths and spatial data clustering analysis.
Future work also includes evaluating the approach
on real workloads and extending it to other data
mining algorithms, always exploiting the quantita-
tive perspective.

References

[1] R. Agrawal, T. Imielinski, and A.Swami.
Database mining: A performance perspective.
In IEEFE Transactions on Knowlegde and Data
Engineering, December 1993.

[2] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in
large databases. In Proceedings of the ACM
SIGMOD, May 1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivo-
nen, and A. Verkamo. Fast discovery of asso-
ciation rules. In Advances in Knowledge Dis-
covery and Data Mining.

[4] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In The 20th VLDB,
September 1994.

[5] Y. Aumann and Y. Lindell. A statistical the-
ory for quantitative association rules. In Fifth
ACM SIGKDD, August 1999.

[6] R. Bayardo and R. Agrawal. Mining the most
interesting rules. In Fifth ACM SIGKDD, Au-
gust 1999.

[7] R. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense
databases. In In Proceedings of the 15th Intl.
Conf. on Data Engineering, March 1999.

[8] J. Bentley. Multidimensional binary search
trees used for associative searching. In Com-
munications of ACM, September 1975.

[9] M. Holsheimer, M. Kersten, H. Mannila, and
H. Toivonen. A perspective on databases and
data mining. In Ist Intl. Conf. on Knowledge
Discovery and Data Mining, August 1995.

[10] M. Houtsma and A. Swami. Set-oriented min-
ing of association rules. Technical Report RJ
9567, IBM Almaden Research Center, October

1993.

B. Liu, W. Hsu, and Y. Ma. Pruning and sum-
marizing the discovered associations. In Fifth
ACM SIGKDD, August 1999.

[11]

[12] R. Miller and Y. Yang. Association rules over
interval data. In Proceedings of the ACM SIG-

MOD, May 1997.

J. Park, M. Chen, and P. Yu. An effective hash
based algorithm for mining associative rules. In
Proceedings of the ACM SIGMOD, May 1995.

[13]

[14] B. Possas, F. Ruas, W. Meira, and R. Resende.
Geracao de regras de associagdo quantitativas.

In XIV SBBD, September 1999.

[15] A. Savasere, E. Omiecinski, and S. Navathe.
An efficient algorithm for mining association
rules in large databases. In The 2Ist VLDB,

September 1995.

R. Srikant and R. Agrawal. Mining quanti-
tative association rules in large relational ta-
bles. In Proceedings of the ACM SIGMOD,
June 1996.

G. Webb. Opus: An efficient admissible al-
gorithm for unordered search. In Journal of
Artificial Intelligence Research, 1995.

Z. Zhang, Y. Lu, and B. Zhang. An effective
partitioning-combining algorithm for discover-
ing quantitative association rules. In First Pa-
cific Asia Conf. on Knowledge Discovery and
Datamining, February 1997.

[16]

[17]

[18]

