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Abstract the data in the first place and to uncompress the data ev-
ery time the data is used, so that compression can result
In this paper, we show how compression can be inie-reduced performance for CPU-bound applications.

grated into a relational database system. Specifically, Wesince many standard (i.e., relational) database applica-
describe how the storage manager, the query execuligis execute a fair amount of CPU-intensive operations
engine, and the query optimizer of a database system 6&9., joins and aggregation), compression has not yet
be extended to deal with compressed data. Our mainfind wide acceptance in the relational database arena,
sult is that compression can significantly improve the rgng database vendors are only slowly adopting compres-
sponse time of queries if vetight-weightcompression sjon techniques for their products. Just to give an exam-
techniques are used. We will present such light-weighe: without compression, a query could have 10 costs
compression techniques and give the results of runnig¥one minute and CPU costs of 30 seconds resulting in
the TPC-D benchmark on a so compressed database gi@verall response time of one minute if CPU and 10
a non-compressed database using the AODB databggfessing can be overlapped. With compression, the 10
system, an experimental database system that was @fsts of the same query could easily be reduced to less
veloped at the Universities of Mannheim and Passalan 30 seconds, but if an expensive compression tech-
Our benchmark results demonstrate that compression,{[que is used, the CPU costs could just as easily be in-
deed offers high performance gains (up to 50%) for IQreased to become more than a minute resulting in an
intensive queries and moderate gains for CPU-intensiygerall higher response time due to compression. In this
queries. Compression can, however, also increase f3@er, we will show that, if done right, compression can
running time of certain update operations. In all, we regs fact reduce the response time of most queries. We will
ommend to extend today's database systems with lighrow that in a carefully designed system, the CPU over-
weight compression techniques and to make extensi&q of compression is tolerable while getting high bene-

use of this feature. fits from compression due to reduced disk O at the same
time.
. Specifically, we will present a set of very simple and
1 Introduction light-weight compression techniques and show how a

o . . . database system can be extended to exploit these com-
Compression is a heavily used technique in many of tzassion techniques. We will address storage manage-

day’s computer systems. To name just a few applicatiofge nt jssues such as the efficient implementation of small
compression is used for audio, image and video data Wjap|e_sized fields, query engine issues such as the effi-
multi-media systems, to carry out backups, t0 COMPI&SEnt evaluation of expressions on compressed data (e.g.,

inverted indexes in information retrieval, and we a”kno‘ffredicates aggregate functions, etc.), and query opti-

the UNIX gzipand the DO&ip commands that we useni;ation issues such as the necessary refinements to the

to ship files across the Internet and to store large files a&qimizer’s cost model in order to find good query plans
software packages that we do not ne.ed very often. o compressed databases. Except for the optimizer's

Compression has two advantages: (1) it reduces cQ¥fst model, we have implemented all our proposed tech-
for storage media (main memory, disk, and tape), and {gyyes in the AODB database system at the Universities
it saves 10 bandwidth (disk, tape, or network communi Mannheim and Passau.

cation) which results in improved performance for 10- , .
bound applications. On the negative side compressioryve will also give the results of performance exper-
' ! iments that we carried out using the TPC-D bench-

can be the cause of significant CPU overhead to ComernSasrk [TPC95]. These experiments demonstrate the re-
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confirm that compression improves the performance 8f Light-Weight Database Compres-
most queries (by a factor of two, in the extreme case). It sion
only shows weaker performance for certain update oper-

ations. In this section, we will describe the compression tech-
The remainder of this paper is organized as followgiques that we considered in this work. We will first de-
Section 2 lists related work on database compressi@Bribe the characteristics a compression technique must
Section 3 presents the light-weight compression tedfzve to be well-suited for general-purpose database sys-
niques used in this work. Section 4 explains how querigsns, and then list the concrete techniques we have cho-
can be executed in the presence of compressed data. §86-to implement in our experimental system. Rather
tion 5 diSCU.SseS our TPC-D results. Section 6 Contamn inventing new Compression techniqueS, our main
our conclusions. contribution is to show explicitly how compression tech-
niques can be integrated into the storage manager of a
database system; we address this subject in the third part
of this section. As stated in the Related Work section,
2 Related Work we will only cover compression techniques for base data
] (i.e., relations); special-purpose compression techniques
Most related work on database compression has focusggdndexes are already very well understood and can be

on the development of new compression algorithms Qgaq independently of the techniques we propose here.
on an evaluation of existing compression techniques for

database systems (e.g., [Sev83, Cor85, RH93, IWo4
ALM96, NR95, GRS98]). Our work differs from all this™"

work in two important ways: First, we were interestedur work is based on two fundamental premises: com-
in showing how compression could be integrated intopression must be very fast, and compression must be fine-
database system rather than inventing new compressjgsined. The importance of both of these premises has
algorithms. Second, we were interested in the perfejiready been discovered and discussed in previous work
mance aspects of compression (i.e., the running times@fdatabase compression; e.g., [GS91, SNG93, RHS95,
queries), and we will, therefore, present the results of peJRS98], and we briefly summarize the arguments in the
formance experiments. All other experimental studie®liowing. A compression technique must be fast and
on the other hand, investigated only the disk savings tiifve very low CPU overhead because otherwise the ben-
can be achieved with database compression. While digls of compression in terms of disk 10 savings would be
savings are an important advantage of compression, &en up by the additional CPU cost. We saw an example
believe that the importance of this factor will decreaggr this phenomenon in the introduction, and [GRS98]
with the continuing trend of dropping disk prices. Wehow that “gzip” is not appropriate for database com-
do note that there have been a couple of papers that gssion because it takes longer to “gunzip” a page than
dress performance issues of database compression (&%ead a page from disk. When we pick a compression
[GS91, SNG93, RHS95, GRS98]), and we took the ofechnique, we are therefore willing to sacrifice a couple
servations made in these papers into account when gf§ercent of disk savings in order to achieve as fast as
designed and implemented our system (see Section 3gbksible decompression performance.
Other than us, however, none of these papers present thatabase compression can, theoretically, be carried
results of comprehensive performance experiments. out in four different granularities: file-level, block-level,
There have been two other areas in which compresstaple-level, and field-level. We propose to use field-
was studied in the context of database systems. Fitstiel compression which means that we compress and
there has been work on the design of special implematecompress a field of a tuple individually and without
tation techniques for, say, joins based on compressi@ading or updating other fields of the same or other tu-
(e.g., [GO95]). Second, there has been a significant bqags. There are several strong arguments in favor of field-
of work on compressed indexes; e.g., VSAM [Wag73gvel compression (see, again, [GS91, SNG93, RHS95,
prefix compression for B trees [Com79], compression &RS98]). Most important, only field-level compression
rectangle descriptions for R trees [GRS98], and comprésehniques are fast enough: for coarser-grained com-
sion of bit mapped indexes [MZ92]. All the work in bothpression, techniques such as “gzip” must be used, and
of these areas is orthogonal to our work: (1) we cothese techniques are too slow, as stated above. Fur-
centrated on studying the performance of compressitrermore, only fine-grained compression makes it pos-
if well-perceived query techniques (e.g., hash joins) asible to lazily decompress fields while executing a query
used, but the techniques we propose would work justasd save a fair amount of costs for decompression this
well if specialized query evaluation algorithms are usediay [GS91, SNG93]: if a query, for example, asks for the
and (2) we concentrated on the compression of base daeeof all Empsthat are older than 60, then we need to
(i.e., relations) and made sure that any kind of indelecompress thagefields of allEmps but we only need
(compressed or not) remains applicable in our enviroie-decompress theamefields of theEmpsthat haveage
ment. > 60, and we do not need to decompress, sayadiueess

1 Premises



fields of anyEmpsat all. Further arguments that demonto decompress the integeMe will discuss a technique
strate difficulties to implement and integrate block-levéb encode and decode this information in Section 3.3, af-
compression techniques into a database system have lieehaving presented all the other compression techniques
described in [GRS98]. because our encoding and decoding techniques are not
While we do propagate fine-grained, field-level conspecific to this or any other particular compression tech-
pression, we do require that the same compression tegique. For the moment, however, keep in mind that our
nique is applied to a whole column of a table. For exaraeding scheme only works well if compressed fields are
ple, we require thagefield of all Emptuples to be com- aligned to bytes. That is, Integer 3 will be represented
pressed in the same way because it would be too cumbst-one byte rather than two bits. Alignment to bytes is
some for the user to specify a compression technique éme example of how we trade disk savings for high-speed
every field of every tuple individually, and it would be toglecompression.
costly for the system to determine the compression model'he same compression technique as for integers can
of a field before accessing the field. Different columns afso be applied to dates. Often a date is represented by
atable can, however, be compressed using different cdhe number of days the date is before or after some cer-
pression techniques, and it is even possible to comprtas base date. If the base date is November 2, 1998, then
certain columns of a table whereas other columns are titg Date November 4, 1998 could be represented by the
compressed. Integer 2, and the Date October 22, 1998 could be repre-
sented by the Integer -11 and both dates could, therefore,
be compressed just like any other integer.
3.2 Concrete Techniques We apply a special compression technique to floating
) o point numbers that are represented using eight bytes in
In the following, we will discuss a number of compresygir uncompressed state (i.e., doubles). In many cases,
sion techniques that we found useful in order to imy, gight byte floating point number can be represented
prove the performance of database systems. Specificg{ying only four bytes and without loosing any informa-
we will describe three compression techniquesmeric ion e will take advantage of this fact and represent
compressionstring compression, andictionary-based f|gating point numbers using four bytes whenever this is
compression. Furthermore, we will describe how CoMBossible.
pression works in the presenceNifLL values. Other forms of numeric compression that we did not

Since all three compression techniques are appliggnsider in our work, but that might be helpful in some
ble in a variety of cases and can be combined to Cogjyations can be found in [NR95, GRS98].

press different columns of a table differently, there are,

in general,_ many different options to compress a tabgfz2 String Compression
and choosing the wrong technique can impact the pei-
formance of a database. Nevertheless, we do not th®RL allows to define strings in two different ways:
that we are adding another heavy burden to the job o€#MAR(n) or VARCHAR(n). In most database systems,
database system administrator because it is usually GHAR(n) fields are represented by allocating a fixed
vious what the right compression techniques for a giveAunk of bytes of lengtlm, whereasVARCHARields
application are. For example, we did not hesitate to uge typically implemented by recording the length of the
dictionary-basedompression foflag fields anchumeric  string and storing the string in a variable chunk that can
compression for all fields of type decimal in our impleshrink and grow depending on the current state of the
mentation of the TPC-D benchmark. (Dictionary-basegring. A simple way to compresS¢ARCHARields is

and numeric compression are described below). to simply compress the part that records the length of the
string using the numeric compression technique for inte-
gers defined aboveCHARfields can be compressed by
converting them into ¥ ARCHAR a first step, and then
The technique we use to compress integers is basec?6Ri€Ving further compression by, again, compressing the
null suppressiorand encoding of the resulting IengtHength of thg resulting variable sf[rmg In asgcond step..
of the compressed integer [RH93]. This technique hag'| the strings are very long, it is sometimes benefi-
also been built into ADABAS, a commercial relationafi@! t0 further compress string fields. If order preser-
database system by Software AG [AG94]. The idea is Ygtion iS not important, such an additional compres-
cross out leading 0's of the representation of an integ8iP" ¢an be done by using the classic compression tech-
In most systems, integers are represented using four bytigi€s such as Huffman coding [Huf52], Arithmetic cod-
so that Integer 3 is represented by 30 bits that are set #99 [WNC87], or the LZW algorithm [Wel84]. If an or-
and two bits that are set to 1. With this kind of compred€r Preserving technique is needed, then this additional

sion, Integer 3 could, therefore, be represented using tANPression can be done using the techniques proposed
bits. Of course, the crux of numeric compression is {8 [BCE76, ALMO96]. All these compression techniques

keep the inf_o_rmation of how many bi_tS are U$ed _tO repre-1n some cases, we also need to encode the sign of the integer in
sent a specific integer because this information is nee@ettr to achieve effective compression for, e.g., Integer -3.

3.2.1 Numeric Compression




can be carried out independently and in addition to tidetermined in order to calculate the offset. The approach

compression of the part that records the length of thee take encodes the length information of every field into

(compressed) string. a fixed number of bits and packs the length codes of all

compressed fields together into a special part of the tuple.

In the following, we will describe the resulting overall

layout of compressed tuples, and then our encoding and

Dictionary-based compression is a very popular comecoding algorithms.

pression technique that can be used for any data type.

Di(_:tionary-based compression is particul_arly effective f 5 4 Layout of Compressed Tuples

a field can take only a small number of different values,

and it is based on storing all the different values a fiefdgure 1 shows the overall layout of a compressed tuple.

can take in a separate data structure,dietionary. If, The figure shows that a tuple can be composed of up to

for instance, a field can only take the values “Mannheirfive parts:

and “Passau,” then the value of the field could be repre- i

sented by a single bit, and this bit could be used to look® The first part of a tuple keeps the (compressed)

up the decompressed value of the field in the dictionary, values of all fields that are compressed using
There are many different variants of dictionary-based dictionary-based compression or any other fixed-

compression conceivable. We have chosen to implement [€Ngth compression technique.

a very simple and somewhat limited variant in which the |

maximum size of the dictionary is known in advance and,

therefore, the number of bits required to represent a field

are known in advance, too. Another interesting and more

general variant of dictionary-based compression is pre-

3.2.3 Dictionary-based Compression

The second part keeps the encoded length informa-
tion of all fields compressed using a variable-length
compression technique such as the numerical com-
pression techniques described above.

sented in [ALM96]. e The third part contains the values of (uncom-
pressed) fields of fixed length; e.g., integers, dou-
3.2.4 Dealing WithNULL Values bles, CHARs but not VARCHARsor CHARsthat

were turned intd&/ ARCHARss a result of compres-
SQL also allowdNULL values for every data type. In re- sion.

alistic applications, integrity constraints disalldWJLL

values for many fields, but in the absence of such con-e The fourth part contains the compressed values of
straints, the system must take into account that fields may fields that were compressed using a variable-length
have NULL values, and a compression technique must compression technique; for example, compressed

uniguely represent and identifyULL values. integers, doubles, or dates. The fourth part would
If dictionary-based compression is usétlJLL values also contain the compressed value of the size of a
can easily be represented by definMigLLas one of the VARCHARield if this value was chosen to be com-
possible values and recording it in the dictionary. If nu-  pressed. (If the size information oh&ARCHAReld
meric compression is used, then a field with vaiigl L is not compressed, then it is stored in the third part

can be represented as a field with length 0. To distinguish ©f a tuple as a fixed-length, uncompressed integer
NULL from Integer 0 and Double 0.0, we represent Inte-  value.)

ger 0 as one byte with all bits turned off and Double 0.0
using four bytes. If string compression is used, we rep-*
resent the empty string as a string with length 0 and the
NULL string as a string with lengtNULL

The fifth part of a tuple, finally, contains the string
values (compressed or not compressedVaR-
CHARfields.

While all this sounds quite complicated, the separation
3.3 Encoding and Decoding Compressionin five different parts is very natural. First of all, it makes
Information sense to separate fixed-sized and variable-sized parts of
tuples, and this separation is standard in most database
We now turn to the question of how all these (and mamsystems today [GR93]. The first three parts of a tuple
other) compression techniques can be integrated into #ne fixed-sized which means that they have the same size
storage manager of a database system. As seen inftineevery tuple of a table. As a result, compression in-
previous subsection, the effectiveness of many (variablermation and/or the value of a field can directly be re-
length) compression techniques depend on efficiently éneved from these parts without further address calcula-
coding and decoding length information for compressédns. In particular, uncompressed integer, double, date,
data items. Another issue is finding the right offset of . fields can directly be accessed regardless of whether
a field, if a tuple contains several variable-length (comther fields are compressed or not. Furthermore, it makes
pressed) fields. In ADABAS for example the time needesnse to pack all the length codes of compressed fields to-
to access a field increases with the position of the fieldgether because we will exploit this bundling in our fast
the tuple as the length of every preceding field has to #ecoding algorithm, as we will see soon. Finally, we



data {

¢ fixed-length variable-length strings
length and offset encoding
encoding for dictionary-based compression

Figure 1: Layout of a Compressed Tuple

| Length [ NOT NULL[ NULL allowed | | Length [ NOT NULL| NULL allowed |
0 — 000 0 — 00
1 00 001 4 0 01
2 01 010 8 1 10
3 10 011
P\ 11 100 Table 2: Length Encoding for Doubles

Table 1: Length Encoding for Integers
Analogously, Table 2 shows the codes for the lengths

of a compressed double. Here, recall that a compressed

separate small variable-length (compressed) fields framuble can either be 4 or 8 bytes londNif)LL values are
potentially large variable-length string fields because thet allowed, and 0, 4, or 8 bytes longNULL values are
length information of small fields can be encoded intllowed so that the length can be coded using only one
less than a byte whereas the length information of largg in the first case and two bits in the second case.
fields is encoded in a two step process as described itf a tuple has several variable-length compressed
Section 3.2.2. fields, then we will try to pack the length codes of as

Obviously, not every tuple of the database consistsmfiny fields as possible into a single byte, but we will
these five parts. For example, tuples that have no comake sure at the same time that the code of a single field
pressed fields consist only of the third and, maybe, tban be retrieved by probing a single byte only. We will
fifth part. Furthermore keep in mind that all tuples of thidustrate this in the following example. The example
same table have the same layout and consist of the samepresses tuples that consist of four integer fields with
number of parts because all the tuples of a table are casJLL allowed, one integer field with HOT NULLcon-
pressed using the same techniques. straint, and a double field withidOT NULLconstraint:

. R = (aint, b:int, c:double not null,
3.3.2 Length Encoding d:int, e:int, fint not null )

From the discussion of the layout of (compressed) tuples,

it is fairly obvious how uncompressed fields and fixed- If all fields are compressed as described in Sec-
length compressed fields are accessed. The open quedt®$h 3.2.1, then the length codes of all six fields are
is how variable-length compressed fields are accessedP@gked into two bytes in the following way:

the following, we will describe how the length of such

fields is encoded and packed into the second part of a
. . . . Byte 1
tuple, and then in the next subsection, we will describe — i —
o . T — [ bity | bitg | bitg [ bit? [ bity | bit ]| bits |
how this information is decoded. Byte 2

Recall that we are mostly interested in encoding the— . . . . . . .
) bit? | bitd | bitd || bitc | bits | bitc || bit! | bit]

length of compressed integer and double values. (DatgaI1 [ bitg [ bitg [ bit; [ bity [ bitg [] bif [ bi; |

can be compressed and represented as integers ang4&qe, bit? refers to theith bit of the length encoding for

strings, we keep the length information separately apgribute 2, and the first bit of Byte 1 is not used.
compress it just like an integer.) Also recall that due to

byte alignment, a compressed integer can be 1, 2, 3, of

bytes long. As a consequence, we can encode the lengt
of a compressed integer using two bits as shown in t@é&ven the encoding scheme from the previous section, it
NOT NULLcolumn of Table 1. If the integer can takés easy to determine the length of a compressed field of
NULLvalues, then we need three bits to encode the lengtlspecific tuple: we simply need to access the right bits
of the compressed integer because a compressed intégyethis field in the length-encoding part of the tuple and

can be 0, 1, 2, 3, or 4 bytes long in this case (fidl L look up the length in an encoding table such as Table 1
allowed column of Table 1). or 2. Before, we can actually access the field, however,

.3 Length Decoding



Attr. a Attr. b Attr.c Attr.d Attr.e Attr.

0||0(1({0}||0|0|0||1 0|/111({0|0|0}|l1|1
Attr.a  Attr.b  Attr. ¢ Attr.d  Attr.e  Attr. f
0 ' I I 0 I I I
o D DO OO ) N o S DO O OO S N
of 1 [ N A o o[ [
al Lol ol ol
2 | | | % | | |
L m| 0} | o: 2] 2 0 20 1 L | 7} | o33 0f 33
. 3 | | 100 | | |
S I e S o 30 RS R EEE R EEEE LIS R
w1 [ N A o [ [
U S N RN RN e o e[ 1 [ RS A RN
T offset T
total length length encoding
Figure 2: Decoding Byte 1 Figure 3: Decoding Byte 2

we need to solve another problem: we have to determine
the offsetof the field which depends on the length of all

the other (compressed) fields stored in the tuple befgjigy out that we need to add another 3 bytes to determine

that field. the full offset for Attributee in this tuple, and to get the
A naive algorithm to determine the offset of, say, th@ngth of Attributee.

ith compressed field would be to loop frgm= 1to:—1,

decode the length of thgth field, and compute the off- |5 general, we maintaid decoding tables for a relation
set as the sum of these lengths. This algorithm woulghose tuples havé bytes in their length-encoding part.
hOWeVer, have very h|gh CPU overhead because it Wolédery decoding table hﬁ entriES, where is the num-
involve decoding the length information of- 1 fields. per of bits used in the corresponding length-encoding
Fortunately, we can do much better by materializing Qﬂ/te; e.g.b = 7 for Byte 1 andb = 8 for Byte 2 of our
possible offsets a field can have in so-caliietoding ta- example. Every entry of a decoding table has totel

bles To see how this works, let us continue our examgl@ngthﬁem (4 bytes) and anffset(2 bytes) andength(2
from above and look at one concrete tuple of Relafton pytes) field for every attribute that is encoded in the cor-
If the compressed value of of this tuple has 2 bytes, responding byte (see Figures 2 and 3). Given this design,
the value ofb has 0 bytes, the value ofhas 8 bytes, the the offset and length of a compressed field of a tuple can
value ofd has 3 bytes, the value ethas 0 bytes, and thepe determined by the algorithm shown in Figure 4.

value of f has 4 bytes, then the two bytes that encode the

length of the tuple would look as follows (using the codes T go back to our example, we note that the decod-
of Tables 1 and 2 and setting the unused bit of Byte 1j{Qy taples are really very small. Relatidd from our

0): example would require one decoding table of size 2 KB
Byte 1 (128 entriesx 16 bytes) and one decoding table of size 4
[oo[Z[oo 00 1] KB (256 entriesx 16 bytes). So, we expect that these de-

Byte 2 coding tables can be kept in main memory most of the
time just like any other meta data. If we are willing to
invest more memory, we could materialize all possible
Now, let us determine the offset of Attribu¢efor this offsets into a single table (rather than one table per byte)
tuple. We first probe the decoding table of Figure 2 witlind achieve decoding in constant time. For Relafign
Byte 1 to find out that with this length encoding, Atsuch auniversaldecoding table would require about 0.5
tributesa, b andc combined consume 10 bytes. TherMIB of main memory 215 entries« 16 bytes). (Of course,
we probe the decoding table of Figure 3 with Byte 2 tihere are also many ways of compromise conceivable.)

(0]1]1]JoJoJoff1[1]




Input:  Attribute identifierattr, encoding informatiowodeByte[Jof a tuple, an array of decoding
tablestable[][] , andencinwhich is the number of the Byte itodeBytehat records
attr’s length code

Output: offset ofattr in the tuple, length of the value attr in the tuple

1: offset=0;

2:for j=1to encln - 1do

3 offset = offset + table[j][codeByte[j]].total

4: return ( offset + table[encln][codeByte[encIn]].offset(attr),

table[encIn][codeByte[encIn]].length(atfr)

Figure 4: Algorithm to Decode Compression Information

4 Executing Queries on  Com- vides three methods [Gra93jpen next andclose open
allocates resources (main memory, disk for temporary re-
pressed Data sults) and does all computations that need to be carried

In the previous section, we showed how compressi@Ht Pefore the iterator can actually produce resuiet
techniques can be integrated and implemented efficierfiff/Vers the result tuples of an iterator one at a tiolese
in the storage manager of a database system. In figleases all the allocated resources and does other clean-
section, we will describe the necessary adjustments'?d UP work. _
carry out queries efficiently in the presence of compres-Here, we are concerned about the interface ofii
sion. Obviously, compression could be integrated infgethod of an iterator. In the classic iterator model,
a database system without any adjustments to the quagytdelivers the next result tuple by returning a (main
execution engine and query optimizer of a database sJ{emMory) pointer to that tuple. We generalize this in-
tem by simply encapsulating compression in the storafgéface and allow theextmethod to return aarray of
manager. Recall from the introduction, however, thRPiNters (rather than just a single pointer). This exten-
compression can easily turn an 10-bound query intoSiPN iS necessary to implement a technique caifed
CPU-bound query; since textbook query execution gplicit joins which is known since the seventies and which
gines have been designed to minimize 10 costs, they né¥@ids copying tuples whe'n p'P?"P?d join methods are
to be extended to minimize CPU costs, too, in order #$ed [Pal74]. To see how implicit joins save CPU costs
take full advantage of database compression. FurthcOpY tuples, consider an index nested loop join (NLIJ)
more, compression can impact the choices made bybgﬁween Relations A and B. In the classic iterator model,
optimizer; for example, the best join orders in a conte NLIJ iterator must copy matching tuples from A and
pressed and uncompressed database may differ. B into a result tuple in order to return a pointer to the
In the following, we will first present the design of ouf€sult tuple. With implicit joins, the NLIJ iterator sim-
guery execution engine and then discuss the query Oﬂy returns two pomters for_ every pair of matchlqg tuples
mization issues. At the end of this section, we will give 50m A and B without copying any tuples from either re-
brief report on the status of our system and on our exg@ton- . _
riences in building the system. Section 5, then, presentd he second step we take to generalize the interface of

the results of experiments that evaluate the performariégnextmethod in the iterator model is to allow iterators
of our engine. to return values of fields of tuples in addition to just re-

turning pointers to tuples. This extension is necessary to
41 uerv Execution Engine avoid decompressing a field twice in the course of evalu-
) Query g ating a query. Consider the following example of an Em-

To achieve lowest-possible CPU overhead during qudipyee database: a table scan iteratofEonpevaluates
execution, we propose the following two techniques: (if)e predicat&mp.salary > 100,000  and pipes the
an extended query iterator model, and (2) evaluatié®sult into an NLIJ iterator that evaluates the predicate
of expressions using a virtual machine which interpregnp.salary < 1% * Dept.budget (among oth-
assembler-like programs. The first extension is necess@f§). Now, assume that titemp.salary field is com-

in order to avoid unnecessary Copying of tup|es durirmeSSEd and consider that thextmethod of an iterator
query execution and to avoid decompressing any fielguld only return pointers to tuples. In this case, the ta-
twice for the same query. The second extension is nede!& scan iterator would decompress tEep.salary
sary in order to minimize the cost to evaluate expressididds of all Emp tuples a first time to evaluate the

(e.g., predicates and aggregate functions). Emp.salary < 100,000  predicate. The table scan
iterator would pass pointers to the resulting (compressed)

Emptuples to the NLIJ iterator so that the NLIJ itera-

tor would have to decompress tlanp.salary field

In the classic iterator model, every query operator suohall resulting tuples a second time in order to evaluate
astable scan, index scan, sodtc. (called iterator) pro- its join predicate. If we generalize the interface of the

4.1.1 Extended Iterator Model
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nextmethod, then the table scan iterator could return the Figure 6: AVM Prg: Aggregate Function
decompressed values of thenp.salary fields in ad-
dition to the pointers to the resultirgmptuple, and the

NLIJ iterator could use the uncompressed values gen@dr-- discount) x (1 + tax)) aggregate func-
ated by the table scan iterator. tion of this query. The instructions of all AVM programs
To conclude, the interface of theext method in our operate on the registers that are passed around in the iter-
extended iterator model now becomes (in C++): ators; that is, the instructions take their parameters from
registers and they write their results into registers. For
bool next(ZReg[]& regSet); example, theLEQ statement €) of Figure 5 compares

. the 10th attribute of the tuple pointed to by Register 14
The nextmethod of an iterator returfiSALSE when the with the constantl998-02-09 and writes the result

iterator is done and cannot find any (new) result tuples : S . .
nextreturns TRUE otherwise. Results (i.e., pointers tmto Register 13. Going into the details of the instruc-

twples and values of fields) are passed thr Set %on set supported by AVM is beyond the scope of this

which is an array of typ@Reg. ZReg is a C++union paper. It should, however, become clear that AVM al-

Igws more efficient expression evaluation than operator
type that can take the uncompressed value of the Ctrees just as register-based programming languages (e

endant of any common SQL data type (i.e., integer, dou- J gister: brog g anguages (€.g.,
P . ’ ’ ++) are more efficient than stack-based programming
ble, date, etc.) as well as internal types used by the quEanguages (e.g., Java). Note that the statements of AVM
engine such aRID andvoid x. For reasons that will = :

. . re machine-independent and that the AVM statements
become clear in the next subsection, we call every en Y e nothing compression-specific about them
oftheregSet array aregister On the iterator side, iterators get AVM programs (in-

. . stead of operator trees), and iterators call AVM to execute
4.1.2  The AODB Virtual Machine these programs, evaluate expressions, and load registers

To date, there has been very little published work &s aside effect: scan iterators get an AVM program for all

the efficient evaluation of expressions in database sji€ Predicates they apply, join iterators get separate AVM
tems. The intuitive approach is to generate an OloeR;_ograms for their primary and secondary join predicates,
%d group-by iterators get several AVM programs in or-

tor tree for every expression at compile time of a que
r to compute aggregate values (separate programs to

and to interpret the operator tree during query executiofy, -
and as far as we know, this approach is used by ofalialize, compute, aggregate, and store the aggregate

cle. The operator-tree approach was also the approd@ii'es) All iterators, except pipeline breakers such as
that we had initially implemented for the AODB sys’[emt.emp get an AVM program to be applied to the result tu-
s of the iterators; usually, these AVM programs only

Going through an operator tree, however, involves hi X . X
CPU costs, and in the experiments carried out with offy©!Ve COPying a pointer to the result tuple(s) into a reg-

first version of AODB, these CPU costs were so high thigfe" SO that it can be consumed by the next iterator and
they ate up all the benefits we achieved by saving 10 codf€d as a parameter in the AVM program of the next iter-
with compression. We, therefore, developed a more efffo- Again note, that the implementation of the iterators
cient method which is based on generating assembler-fjj@/€ nothing compression-specific gbout them (just like
statements at compile time and interpreting these sttyM) SO that the same set of query iterators can be ap-
ments with a special virtual machine that we call Agm Plied to compressed and uncompressed databases.

The only references to a similar idea we found in the lit-

erature are an (old) IBM technical report [LW79] and 4.2 Query Optimization

paper that describes how a rule-based system can be used _ .
get the best possible query plans in the presence of

to generate such statements for a given query [FG89]. . o I adiust s 1o th hvsical
were also told that IBM DB2 uses assembler-like stafg2mPression, two smail adjustments 1o the (physical)
ry optimizer are required. These adjustments are nec-

ments to evaluate expressions, but such details of DB
have not yet been published. essary beca_use the best query plan for an uncompressed
As an example, Figures 5 and 6 show two AVM proo_latabase might not be the best query plan for a com-

grams that we used to implement Query 1 of the TPC_;?essed database. Since compression impacts the size

benchmark [TPC95]. The first program implements t dbaITe rtlalat|.ons a?d. ||_'1terr(rj1eQ|ate rzstlrj]lts,hcc_)mpr?.ss_lon
shipdate predicate of this query, and the second AV eally) also impacts join ordering and the choice of join

program implements theum(extended _price methods. An (index) nested-loop join might, for exam-
h ple, be favorable for a query in a compressed database

2AVM stands for AODB Virtual Machine. because the inner relation fits in memory due to com-




pression, whereas a merge join might be favorable for isethe query optimizer. This deficiency is, however, not
same query in an uncompressed database because nddtierto compression. It is due to the fact that the sys-
relation fits in memory due to the absence of comprdem has been growing dramatically in the last couple of
sion. One important point to notice, however, is thatraonths, so that we have not been able to keep the opti-
guery plan that shows good performance in an uncomizer up-to-date in order to consider all different join and
pressed database will also show good performancegimoup-by methods we have implemented.
a compressed database so that an optimizer that lack®ne important observation we made is that our
these adjustments will produce acceptable plans for cothanges to the query execution engine (extended itera-
pressed databases. The purpose of the two adjustmémtsnodel and AVM) helped to improve the performance
we list in the following, therefore, is to finds-good-as- of queries on compressehd uncompressed databases:
possiblequery plans for compressed databases. in both cases, we observed savings in CPU costs by more
The first and most important adjustment is to make thigan a factor of two due to these changes. Also, integrat-
cost model of the optimizer “compression-aware”. If theg compression into the storage manager did not affect
optimizer's cost model is compression-aware, the optite performance of queries on uncompressed data (see
mizer will automatically choose the (index) nested-loopection 3.3.1). Not affecting the performance of queries
join plan in the example of the last paragraph because uncompressed data was very important for us because
this plan has lower cost than the merge join plan, aidallowed us to explicitly study the performance trade-
the optimizer will also automatically generate a plan withffs of database compression, which is the subject of the
the right join order in the presence of compression. T@xt section.
make the optimizer’s cost model “compression-aware,”

we need to carry out the following two steps:
5 TPC-D Benchmark Results
1. The cost model ought to account for the CPU costs
to decompress fields of tuples. Given the techniquiesthis section, we will present the results of running the
presented in Section 3 and the optimizer’s estimaféBC-D benchmark [TPC95] on a compressed database
for the cardinality of base relations and temporarsing the techniques described in the previous two sec-
results, these CPU costs are very easy to predimdns. To study the performance tradeoffs of database
and therefore, can easily be considered in the apmpression, we compare these results with the results
timizer's cost model. of the TPC-D benchmark on an uncompressed database.

We will first describe the details of our implementation

2. The memory requirements and disk 10 estimates gf the TPC-D benchmark. Afterwards we will address
every iterator need to be adjusted because they @{g penchmark results including the database sizes, the

significantly smaller in the presence of compressiogy |k |pading times, and the running times of the seven-
The exact savings due to compression are difficult {9a, queries and two update functions.

predict because they depend on the characteristics of

the data set; for the light-weight compression tech- ) .
niques we used in this work, however, we found thax 1~ Implementation of the TPC-D Queries
savings of 50% per compressed attribute is a good ~and Update Functions

rule of thumb. As mentioned before, we used the AODB database sys-

The second adjustment is to make the optimizer deci§&" @s an experimental platform. AODB is pretty much a
whether temporary results should be compressed or igKtP0OK relational database system with the special fea-
If large temporary results must be written to disk (e.gures described in Sections 3and 4 (e.g., extended iterator
for sorting), it is sometimes good to compress those field9del, AVM, etc.). Since the AODB optimizer currently
that are not already compressed (e.g., results of aggref@S not work very well, we had to craft the query plans
functions) first in order to save disk 10. If, however, thEor the TPC-D queries and update functions manually. In
sort can be carried out in memory completely, becaud@ing so, we were guided by the query plans produced
the temporary results are small or if there are no CAY commercial database systems for the TPC-D queries.
cycles left to be spent, then it does not make senselte€ plans were mostly left-deep with group-by operators

compress fields because no advantage can be expett#fig at the top of the plans (i.e., we did not consider
from compression. any early aggregation alla [YL94, CS94]). GRACE-hash

and blockwise hashed nested-loop were the preferred join
) methods [HR96, HCLS97], and we also used hashing for
4.3 Implementation Status most of our group-by operations. We had secondary non-

We have implemented the extensions to the storage makstered B tree indexe% on all date fields and clus-

ager described in Section 3 and most of the extensiond@fd indexes on the keys of all tables. It turned out that

. . . . . + i
the query engine described in this section as part of fRe T€€S are not useful to improve the performance of

AOD_B pr_OjECt using C++ as a progr_amming Ia_nguage. 3We used the B tree implementation of the Berkeley Database
At this point, the only component that is not working welbolkit which can be found dittp:/Awww.sleepycat.com/




the heavy-weight TPC-D queries, so that we did not use | Table | Compressed Uncompressed
the BT trees in ouregular implementation of the TPC- lineitem 427,360 758,540
D benchmark. To show the impact of indexes on com- order 132,164 177,900
pression for TPC-D style queries, however, we will show partsupp 112,588 124,600
the running time of a TPC-D query with an index plan. part 24,120 29,680
Memory was allocated in such a way that all operators customer 22,916 28,256
read and wrote large blocks of data (usually at least 16 supplier 1,412 1,640
pages) to disk in order to avoid disk seeks. The plans nation 4 4
and memory allocation we used for the compressed and ~ L'€9'9n 4 4

| total |  720,568] 1,120,634]

uncompressed databases were identical; that is, we first
found a good plan and memory allocation for a query U‘F
) 2 Ta
ing the uncompressed database, and then ran this plan
on the compressed and uncompressed databases. A
scribed in Section 4.2, this approach was conservative: it

r&s_sed Tables (SF=1)

ble 3: Size in KB of the Compressed and Uncom-

might have been possible to achieve better responsetimes [ Table | Compressed Uncompressed
on the compressed database with compression-specific lineitem 7:08.5 5:03.6
guery plans so that the results we present can, in some order 1285 59.1
sense, be seen as a lower bound for the performance im- partsupp 429 36.2
provements that can be achieved by compression in the part 13.9 9.2
TPC-D benchmark. customer 11.2 8.2
To compress the TPC-D database, we used the follow- supplier 1.2 1.0
ing compression techniques: we used numeric compres- [ total | 9:46.2 | 6:57.3|

sion as described in Section 3.2.1 for all integers and dec-
imals, and we used dictionary-based compression for Bible 4: Time (min:secs) to Bulkload the TPC-D
flag fields as described in Section 3.2.3. We turned &latabase (SF=1)

CHAR(n) strings intoVARCHARsand compressed the

length information oVARCHARsas described in Sec-

tion 3.2.2. We did not use any Huffman coding or SO i3y numerical values (integers, decimals etc.) that we
furthercompres§ strings. We felt that uslng.SUC_h sophigijy compress. On the other hand, the fraction of (long)
cated compression techniques for long string fields (e-_Qt'r’ing values for which we only compressed the length in-
commentsn the TPC-D tables) would have been unfaj,mation was quite high in the other tables so that we did
in favor of compression because using such compressipR achieve high compression rates for these tables. As a
tgchnlques Would. have rgsulted in h|gh compression rr?q;g[% of thumb, we found that our light-weight compres-
(i-e., high 10 savings) without paying the price for thigjs techniques achieved about 50% compression rate on
compression, as these fields are rarely used in the TPGBse fields which we did compress. As stated above, we

queries. Also, we did not compress any date fields, agg| ot compress thREGIONand NATION tables be-
we did not compress tHREGIONandNATIONtables as 5,se they fit into a single 4 KB page.

they fit into a single page on disk.
We ran all TPC-D queries and update functions on
compressed and uncompressed databases with scaling
factor SF=1. The machine we used was a Sun Ultra ll .
workstation with a 300 MHz processor and 256 MB o?-3 Loading the Compressed and Uncom-
main memory. To execute the queries, however, we lim-  pressed Databases
ited the size of the database buffer pool to 24 MB. The

databases were stored on a 9 GB Seagate Barracuda ligife 4 shows the times to bulkload the compressed and
drive, and we had another 9 GB Seagate Barracuda diglcompressed databases. We observe that the bulkload-
drive to store temporary results of queries. The opergiy times tend to be 20% to 50% higher for compres-
ing system was Sun Solaris Version 2.6. We configurggn. while compression does reduce the cost to write
AODB to use 4 KB as the page size. (new) pages to disk, bulkloading is a CPU-bound oper-

ation because bulkloading involves parsing the input file
5.2 Size of the Compressed and Uncom-ne character atatime. Typically, we had more than 90%

pressed Databases CPU utilization during bulkloading both the c_ompressed

and the uncompressed database, @mipressinguples
Table 3 shows the size of the compressed and wvhich is part of bulkloading has very high CPU over-
compressed databases. Depending on the TPC-Dhead; much higher in fact thatecompressintuples. We
ble, we achieved compression rates between 10% alwdnot show the bulk loading times for tiREGIONand
45%. The highest compression rate we achieved wasfo&TIONtables in Table 4 because they were too small to
the LINEITEM table because thelNEITEM table has be measured.



5.4 Running Times of the TPC-D Queries | | Compressed Uncompressed
and Update Functions | Q10i | 93.3 | 134.0]

Regular TPC-D Results Table 5 lists the running Table 6: Running Time (secs): Query 10, Index Plan

times, CPU costs, and CPU utilization of the seventeen

queries and two update functions of the TPC-D bendmpact of Indexes Table 6 shows the running time of
mark. As described in Section 5.1, these results were @bplan for Query 10 that uses tlEORDERDATidex
tained using the best possible plans for the uncompresgg@valuate the range predicate of that query. (All other
database, and these plans did not exploit indexes. Iyséries showed a deterioration of performance for both
looking at the results for the seventeen queries, we ahe compressed and the uncompressed databases when
serve that compression never looses; that is, in all theggng indexes.) What we see is that the running time
queries the benefits due to reduced 10 costs outweigh #iehis plan is again significantly better with compres-
CPU overhead of compression. The performance igion than without compression, and that is for the same
provements due to compression, of course, dependreasons than in the other experiments: reduced disk 10
the kind of query; i.e., the selectivity of the predicateglue to compression. In fact, the use of the index slightly
the number of joins and the tables involved in the joinBnproved the running time of this query in the com-
the presence dDRDER B¥ndGROUP B¥lauses, and pressed database whereas it made the running time of
on the columns used in the expressions and in the reshi# query worse in the uncompressed database. In gen-
of the query. In six cases (Q1, Q4, Q6, Q13, Q15, ardal, indexes do not significantly affect the performance
Q17), we found compression to improve the running timgadeoffs of database compression. In cases in which sig-
by 40% or even more, whereas we only found one casiicant amounts of base data must be read using an in-
(Q16) in which the savings in running time was less thafex (e.g., TPC-D style queries), compression reduces the
20%. amount of disk IO because it is the cause for higher buffer

Looking closer at the CPU costs and CPU utilizatioftit rates (normal index scans) or because simply less data
of the queries, we can see how important it is to impl82USt be scanned (index scans with RID sorts [CK98]).
ment compression in such a way that the CPU overhdBdca@ses in which only small amounts of data must be
of compression is as small as possible. None of thé§&d using an index, compressed databases show about
queries has 100% CPU utilization, but CPU utilizatiori§® Same performance as uncompressed database: in such
of about 70% are pretty common, if compression is usé@Ses, compression does not result in significant disk 10
A naive decoding algorithm that does not take advantag%”ef'tsv but compression does not result in significant
of decoding table¢see Section 3.3.3), alone, would triplé-PU overheads either.
the CPU costs of decompression for most queries. In-
creasing the CPU costs by a factor of three would ngt ;
only eat up all the benefits of reduced disk 10, it woul§ Conclusion

result in overall much higher running times for the COM: this work. we showed how compression can be inte-
pressed database than for the uncompressed dl"‘t""t""‘SSrated into a database system. While there has been a

Turning to the results of the update functions, we olarge body of related work describing specific database
serve that compression does increase the running ticoepression algorithms, this paper is the first paper that
of update function UF1 by a factor of two. UF1 inteally describes in full detail and at a low level how these
serts about 7500 tuples which are specified in a text fdlgyorithms can be built into a database system. Our expe-
into the database, and we see basically the same penfience shows that such low-level considerations are very
mance degradation due to compression as in the bulkportant to make compression perform well because the
loading experiments (see Table 4). The tuples can be agpecution of many queries involves the decompression of
pended to th©ORDERINALINEITEM tables with fairly millions of tuples. We defined the layout of compressed
little disk 10 cost so that CPU costs for parsing the temiiples in which variable-length fields are separated from
file dominate the running time of UF1 and compressidixed-length fields and compressed fields are separated
looses due to the high cost to compress tuples. For @fimm uncompressed fields. This layout allows direct ac-
date function UF2, on the other hand, compression wicsss to fixed-length fields, and it allows to compress in-
by a significant margin. Update function UF2 deletegividual fields without affecting other (uncompressed)
about 75000RDERandLINEITEM tuples and involves fields. Furthermore, we developed very fast encoding and
a fair amount of disk 1O in order to find the right tupleslecoding algorithms so that compressed fields can be ac-
to delete. Compression saves costs to carry out thesssed almost as fast as uncompressed fields.
disk I0s and has an additional advantage in this partic-In addition to the low-level storage manager issues for
ular case: compression has (almost) no additional CEt¢ integration of compression, we described the (novel)
overhead in this case because tuples that are deleted nisign of our AODB query execution engine with its ex-
not be decompressed. (Only the primary keys need totbaded iterator model and AVM for very fast expression
decompressed in order to find the right tuples to deletesyaluation during query execution. The development of



Query Compressed Uncompressed
Update Time | CPU | %-CPU| Time | CPU| %-CPU
Q1 42.4| 333 78.5 73.7| 227 30.8
Q2 13.7 5.0 36.5 17.9 3.0 16.8
Q3 88.5| 52.0 58.8| 126.0| 434 34.4
Q4 67.9| 38.8 57.1| 113.3| 33.7 29.7
Q5 61.5| 423 68.8 98.4| 31.6 32.1
Q6 43.0| 22.8 53.0 742 | 158 21.3
Q7 719 | 46.5 67.7| 105.8| 345 32.6
Q8 66.8| 38.4 57.5| 104.1| 23.6 22.7
Q9 136.6 | 954 69.8| 174.8| 78.0 44.6
Q10 96.1| 455 474 | 1315| 341 25.9
Q11 11.4 4.6 40.4 14.9 3.0 20.1
Q12 812 | 69.1 85.1| 106.2| 44.7 42.1
Q13 57.2| 27.9 48.8 97.0| 20.9 21.6
Q14 478 | 24.0 50.2 78.6| 16.6 21.1
Q15 441 | 23.8 54.0 75.1| 18.0 24.0
Q16 146 | 13.0 89.0 16.7 | 11.0 65.9
Q17 744 | 39.6 53.2| 156.9| 31.0 19.8
UF1 0.6 0.6 100.0 0.3 0.3 100.0
UF2 124.4| 305 245 | 216.1| 36.3 16.7
total 1237.4| 694.6 56.1 | 1915.5| 534.7 27.9
geometric mean 41.4| 23.6 57.0 596 | 17.3 29.0

Table 5: TPC-D Power Test: Running Time (secs), CPU Cost (secs), CPU Utilization (%)

the highly tuned AODB query engine was triggered bgost than decompressing a tuple so that we cannot foresee
our work on high-performance compression, and AODiBat compression is going to improve the performance of
made it easy to integrate compression-specific adjuSiTP-style applications any time soon.
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