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Abstract

In this paper, we show how compression can be inte-
grated into a relational database system. Specifically, we
describe how the storage manager, the query execution
engine, and the query optimizer of a database system can
be extended to deal with compressed data. Our main re-
sult is that compression can significantly improve the re-
sponse time of queries if verylight-weightcompression
techniques are used. We will present such light-weight
compression techniques and give the results of running
the TPC-D benchmark on a so compressed database and
a non-compressed database using the AODB database
system, an experimental database system that was de-
veloped at the Universities of Mannheim and Passau.
Our benchmark results demonstrate that compression in-
deed offers high performance gains (up to 50%) for IO-
intensive queries and moderate gains for CPU-intensive
queries. Compression can, however, also increase the
running time of certain update operations. In all, we rec-
ommend to extend today’s database systems with light-
weight compression techniques and to make extensive
use of this feature.

1 Introduction

Compression is a heavily used technique in many of to-
day’s computer systems. To name just a few applications,
compression is used for audio, image and video data in
multi-media systems, to carry out backups, to compress
inverted indexes in information retrieval, and we all know
the UNIX gzip and the DOSzip commands that we use
to ship files across the Internet and to store large files and
software packages that we do not need very often.

Compression has two advantages: (1) it reduces costs
for storage media (main memory, disk, and tape), and (2)
it saves IO bandwidth (disk, tape, or network communi-
cation) which results in improved performance for IO-
bound applications. On the negative side, compression
can be the cause of significant CPU overhead to compress
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the data in the first place and to uncompress the data ev-
ery time the data is used, so that compression can result
in reduced performance for CPU-bound applications.

Since many standard (i.e., relational) database applica-
tions execute a fair amount of CPU-intensive operations
(e.g., joins and aggregation), compression has not yet
found wide acceptance in the relational database arena,
and database vendors are only slowly adopting compres-
sion techniques for their products. Just to give an exam-
ple: without compression, a query could have IO costs
of one minute and CPU costs of 30 seconds resulting in
an overall response time of one minute if CPU and IO
processing can be overlapped. With compression, the IO
costs of the same query could easily be reduced to less
than 30 seconds, but if an expensive compression tech-
nique is used, the CPU costs could just as easily be in-
creased to become more than a minute resulting in an
overall higher response time due to compression. In this
paper, we will show that, if done right, compression can
in fact reduce the response time of most queries. We will
show that in a carefully designed system, the CPU over-
head of compression is tolerable while getting high bene-
fits from compression due to reduced disk IO at the same
time.

Specifically, we will present a set of very simple and
light-weight compression techniques and show how a
database system can be extended to exploit these com-
pression techniques. We will address storage manage-
ment issues such as the efficient implementation of small
variable-sized fields, query engine issues such as the effi-
cient evaluation of expressions on compressed data (e.g.,
predicates, aggregate functions, etc.), and query opti-
mization issues such as the necessary refinements to the
optimizer’s cost model in order to find good query plans
for compressed databases. Except for the optimizer’s
cost model, we have implemented all our proposed tech-
niques in the AODB database system at the Universities
of Mannheim and Passau.

We will also give the results of performance exper-
iments that we carried out using the TPC-D bench-
mark [TPC95]. These experiments demonstrate the re-
ductions in the size of the database that are likely to be
achieved using light-weight compression techniques and

1



confirm that compression improves the performance of
most queries (by a factor of two, in the extreme case). It
only shows weaker performance for certain update oper-
ations.

The remainder of this paper is organized as follows:
Section 2 lists related work on database compression.
Section 3 presents the light-weight compression tech-
niques used in this work. Section 4 explains how queries
can be executed in the presence of compressed data. Sec-
tion 5 discusses our TPC-D results. Section 6 contains
our conclusions.

2 Related Work

Most related work on database compression has focussed
on the development of new compression algorithms or
on an evaluation of existing compression techniques for
database systems (e.g., [Sev83, Cor85, RH93, IW94,
ALM96, NR95, GRS98]). Our work differs from all this
work in two important ways: First, we were interested
in showing how compression could be integrated into a
database system rather than inventing new compression
algorithms. Second, we were interested in the perfor-
mance aspects of compression (i.e., the running times of
queries), and we will, therefore, present the results of per-
formance experiments. All other experimental studies,
on the other hand, investigated only the disk savings that
can be achieved with database compression. While disk
savings are an important advantage of compression, we
believe that the importance of this factor will decrease
with the continuing trend of dropping disk prices. We
do note that there have been a couple of papers that ad-
dress performance issues of database compression (e.g.,
[GS91, SNG93, RHS95, GRS98]), and we took the ob-
servations made in these papers into account when we
designed and implemented our system (see Section 3.1).
Other than us, however, none of these papers present the
results of comprehensive performance experiments.

There have been two other areas in which compression
was studied in the context of database systems. First,
there has been work on the design of special implemen-
tation techniques for, say, joins based on compression
(e.g., [GO95]). Second, there has been a significant body
of work on compressed indexes; e.g., VSAM [Wag73],
prefix compression for B trees [Com79], compression of
rectangle descriptions for R trees [GRS98], and compres-
sion of bit mapped indexes [MZ92]. All the work in both
of these areas is orthogonal to our work: (1) we con-
centrated on studying the performance of compression
if well-perceived query techniques (e.g., hash joins) are
used, but the techniques we propose would work just as
well if specialized query evaluation algorithms are used,
and (2) we concentrated on the compression of base data
(i.e., relations) and made sure that any kind of index
(compressed or not) remains applicable in our environ-
ment.

3 Light-Weight Database Compres-
sion

In this section, we will describe the compression tech-
niques that we considered in this work. We will first de-
scribe the characteristics a compression technique must
have to be well-suited for general-purpose database sys-
tems, and then list the concrete techniques we have cho-
sen to implement in our experimental system. Rather
than inventing new compression techniques, our main
contribution is to show explicitly how compression tech-
niques can be integrated into the storage manager of a
database system; we address this subject in the third part
of this section. As stated in the Related Work section,
we will only cover compression techniques for base data
(i.e., relations); special-purpose compression techniques
for indexes are already very well understood and can be
used independently of the techniques we propose here.

3.1 Premises

Our work is based on two fundamental premises: com-
pression must be very fast, and compression must be fine-
grained. The importance of both of these premises has
already been discovered and discussed in previous work
on database compression; e.g., [GS91, SNG93, RHS95,
GRS98], and we briefly summarize the arguments in the
following. A compression technique must be fast and
have very low CPU overhead because otherwise the ben-
efits of compression in terms of disk IO savings would be
eaten up by the additional CPU cost. We saw an example
for this phenomenon in the introduction, and [GRS98]
show that “gzip” is not appropriate for database com-
pression because it takes longer to “gunzip” a page than
to read a page from disk. When we pick a compression
technique, we are therefore willing to sacrifice a couple
of percent of disk savings in order to achieve as fast as
possible decompression performance.

Database compression can, theoretically, be carried
out in four different granularities: file-level, block-level,
tuple-level, and field-level. We propose to use field-
level compression which means that we compress and
decompress a field of a tuple individually and without
reading or updating other fields of the same or other tu-
ples. There are several strong arguments in favor of field-
level compression (see, again, [GS91, SNG93, RHS95,
GRS98]). Most important, only field-level compression
techniques are fast enough: for coarser-grained com-
pression, techniques such as “gzip” must be used, and
these techniques are too slow, as stated above. Fur-
thermore, only fine-grained compression makes it pos-
sible to lazily decompress fields while executing a query
and save a fair amount of costs for decompression this
way [GS91, SNG93]: if a query, for example, asks for the
nameof all Emps that are older than 60, then we need to
decompress theagefields of allEmps, but we only need
to decompress thenamefields of theEmps that haveage
> 60, and we do not need to decompress, say, theaddress



fields of anyEmpsat all. Further arguments that demon-
strate difficulties to implement and integrate block-level
compression techniques into a database system have been
described in [GRS98].

While we do propagate fine-grained, field-level com-
pression, we do require that the same compression tech-
nique is applied to a whole column of a table. For exam-
ple, we require theagefield of all Emptuples to be com-
pressed in the same way because it would be too cumber-
some for the user to specify a compression technique for
every field of every tuple individually, and it would be too
costly for the system to determine the compression mode
of a field before accessing the field. Different columns of
a table can, however, be compressed using different com-
pression techniques, and it is even possible to compress
certain columns of a table whereas other columns are not
compressed.

3.2 Concrete Techniques

In the following, we will discuss a number of compres-
sion techniques that we found useful in order to im-
prove the performance of database systems. Specifically,
we will describe three compression techniques:numeric
compression,string compression, anddictionary-based
compression. Furthermore, we will describe how com-
pression works in the presence ofNULLvalues.

Since all three compression techniques are applica-
ble in a variety of cases and can be combined to com-
press different columns of a table differently, there are,
in general, many different options to compress a table,
and choosing the wrong technique can impact the per-
formance of a database. Nevertheless, we do not think
that we are adding another heavy burden to the job of a
database system administrator because it is usually ob-
vious what the right compression techniques for a given
application are. For example, we did not hesitate to use
dictionary-basedcompression forflagfields andnumeric
compression for all fields of type decimal in our imple-
mentation of the TPC-D benchmark. (Dictionary-based
and numeric compression are described below).

3.2.1 Numeric Compression

The technique we use to compress integers is based on
null suppressionand encoding of the resulting length
of the compressed integer [RH93]. This technique has
also been built into ADABAS, a commercial relational
database system by Software AG [AG94]. The idea is to
cross out leading 0’s of the representation of an integer.
In most systems, integers are represented using four bytes
so that Integer 3 is represented by 30 bits that are set to 0
and two bits that are set to 1. With this kind of compres-
sion, Integer 3 could, therefore, be represented using two
bits. Of course, the crux of numeric compression is to
keep the information of how many bits are used to repre-
sent a specific integer because this information is needed

to decompress the integer.1 We will discuss a technique
to encode and decode this information in Section 3.3, af-
ter having presented all the other compression techniques
because our encoding and decoding techniques are not
specific to this or any other particular compression tech-
nique. For the moment, however, keep in mind that our
coding scheme only works well if compressed fields are
aligned to bytes. That is, Integer 3 will be represented
by one byte rather than two bits. Alignment to bytes is
one example of how we trade disk savings for high-speed
decompression.

The same compression technique as for integers can
also be applied to dates. Often a date is represented by
the number of days the date is before or after some cer-
tain base date. If the base date is November 2, 1998, then
the Date November 4, 1998 could be represented by the
Integer 2, and the Date October 22, 1998 could be repre-
sented by the Integer -11 and both dates could, therefore,
be compressed just like any other integer.

We apply a special compression technique to floating
point numbers that are represented using eight bytes in
their uncompressed state (i.e., doubles). In many cases,
an eight byte floating point number can be represented
using only four bytes and without loosing any informa-
tion. We will take advantage of this fact and represent
floating point numbers using four bytes whenever this is
possible.

Other forms of numeric compression that we did not
consider in our work, but that might be helpful in some
situations can be found in [NR95, GRS98].

3.2.2 String Compression

SQL allows to define strings in two different ways:
CHAR(n) or VARCHAR(n). In most database systems,
CHAR(n) fields are represented by allocating a fixed
chunk of bytes of lengthn, whereasVARCHARfields
are typically implemented by recording the length of the
string and storing the string in a variable chunk that can
shrink and grow depending on the current state of the
string. A simple way to compressVARCHARfields is
to simply compress the part that records the length of the
string using the numeric compression technique for inte-
gers defined above.CHARfields can be compressed by
converting them into aVARCHARin a first step, and then
achieving further compression by, again, compressing the
length of the resulting variable string in a second step.

If the strings are very long, it is sometimes benefi-
cial to further compress string fields. If order preser-
vation is not important, such an additional compres-
sion can be done by using the classic compression tech-
niques such as Huffman coding [Huf52], Arithmetic cod-
ing [WNC87], or the LZW algorithm [Wel84]. If an or-
der preserving technique is needed, then this additional
compression can be done using the techniques proposed
in [BCE76, ALM96]. All these compression techniques

1In some cases, we also need to encode the sign of the integer in
order to achieve effective compression for, e.g., Integer -3.



can be carried out independently and in addition to the
compression of the part that records the length of the
(compressed) string.

3.2.3 Dictionary-based Compression

Dictionary-based compression is a very popular com-
pression technique that can be used for any data type.
Dictionary-based compression is particularly effective if
a field can take only a small number of different values,
and it is based on storing all the different values a field
can take in a separate data structure, thedictionary. If,
for instance, a field can only take the values “Mannheim”
and “Passau,” then the value of the field could be repre-
sented by a single bit, and this bit could be used to look
up the decompressed value of the field in the dictionary.

There are many different variants of dictionary-based
compression conceivable. We have chosen to implement
a very simple and somewhat limited variant in which the
maximum size of the dictionary is known in advance and,
therefore, the number of bits required to represent a field
are known in advance, too. Another interesting and more
general variant of dictionary-based compression is pre-
sented in [ALM96].

3.2.4 Dealing WithNULLValues

SQL also allowsNULLvalues for every data type. In re-
alistic applications, integrity constraints disallowNULL
values for many fields, but in the absence of such con-
straints, the system must take into account that fields may
haveNULL values, and a compression technique must
uniquely represent and identifyNULLvalues.

If dictionary-based compression is used,NULLvalues
can easily be represented by definingNULLas one of the
possible values and recording it in the dictionary. If nu-
meric compression is used, then a field with valueNULL
can be represented as a field with length 0. To distinguish
NULL from Integer 0 and Double 0.0, we represent Inte-
ger 0 as one byte with all bits turned off and Double 0.0
using four bytes. If string compression is used, we rep-
resent the empty string as a string with length 0 and the
NULLstring as a string with lengthNULL.

3.3 Encoding and Decoding Compression
Information

We now turn to the question of how all these (and many
other) compression techniques can be integrated into the
storage manager of a database system. As seen in the
previous subsection, the effectiveness of many (variable-
length) compression techniques depend on efficiently en-
coding and decoding length information for compressed
data items. Another issue is finding the right offset of
a field, if a tuple contains several variable-length (com-
pressed) fields. In ADABAS for example the time needed
to access a field increases with the position of the field in
the tuple as the length of every preceding field has to be

determined in order to calculate the offset. The approach
we take encodes the length information of every field into
a fixed number of bits and packs the length codes of all
compressed fields together into a special part of the tuple.
In the following, we will describe the resulting overall
layout of compressed tuples, and then our encoding and
decoding algorithms.

3.3.1 Layout of Compressed Tuples

Figure 1 shows the overall layout of a compressed tuple.
The figure shows that a tuple can be composed of up to
five parts:

• The first part of a tuple keeps the (compressed)
values of all fields that are compressed using
dictionary-based compression or any other fixed-
length compression technique.

• The second part keeps the encoded length informa-
tion of all fields compressed using a variable-length
compression technique such as the numerical com-
pression techniques described above.

• The third part contains the values of (uncom-
pressed) fields of fixed length; e.g., integers, dou-
bles, CHARs, but not VARCHARsor CHARsthat
were turned intoVARCHARsas a result of compres-
sion.

• The fourth part contains the compressed values of
fields that were compressed using a variable-length
compression technique; for example, compressed
integers, doubles, or dates. The fourth part would
also contain the compressed value of the size of a
VARCHARfield if this value was chosen to be com-
pressed. (If the size information of aVARCHARfield
is not compressed, then it is stored in the third part
of a tuple as a fixed-length, uncompressed integer
value.)

• The fifth part of a tuple, finally, contains the string
values (compressed or not compressed) ofVAR-
CHARfields.

While all this sounds quite complicated, the separation
in five different parts is very natural. First of all, it makes
sense to separate fixed-sized and variable-sized parts of
tuples, and this separation is standard in most database
systems today [GR93]. The first three parts of a tuple
are fixed-sized which means that they have the same size
for every tuple of a table. As a result, compression in-
formation and/or the value of a field can directly be re-
trieved from these parts without further address calcula-
tions. In particular, uncompressed integer, double, date,
. . . fields can directly be accessed regardless of whether
other fields are compressed or not. Furthermore, it makes
sense to pack all the length codes of compressed fields to-
gether because we will exploit this bundling in our fast
decoding algorithm, as we will see soon. Finally, we
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Figure 1: Layout of a Compressed Tuple

Length NOT NULL NULL allowed

0 — 000
1 00 001
2 01 010
3 10 011
4 11 100

Table 1: Length Encoding for Integers

separate small variable-length (compressed) fields from
potentially large variable-length string fields because the
length information of small fields can be encoded into
less than a byte whereas the length information of large
fields is encoded in a two step process as described in
Section 3.2.2.

Obviously, not every tuple of the database consists of
these five parts. For example, tuples that have no com-
pressed fields consist only of the third and, maybe, the
fifth part. Furthermore keep in mind that all tuples of the
same table have the same layout and consist of the same
number of parts because all the tuples of a table are com-
pressed using the same techniques.

3.3.2 Length Encoding

From the discussion of the layout of (compressed) tuples,
it is fairly obvious how uncompressed fields and fixed-
length compressed fields are accessed. The open question
is how variable-length compressed fields are accessed. In
the following, we will describe how the length of such
fields is encoded and packed into the second part of a
tuple, and then in the next subsection, we will describe
how this information is decoded.

Recall that we are mostly interested in encoding the
length of compressed integer and double values. (Dates
can be compressed and represented as integers and for
strings, we keep the length information separately and
compress it just like an integer.) Also recall that due to
byte alignment, a compressed integer can be 1, 2, 3, or 4
bytes long. As a consequence, we can encode the length
of a compressed integer using two bits as shown in the
NOT NULLcolumn of Table 1. If the integer can take
NULLvalues, then we need three bits to encode the length
of the compressed integer because a compressed integer
can be 0, 1, 2, 3, or 4 bytes long in this case (theNULL
allowed column of Table 1).

Length NOT NULL NULL allowed

0 — 00
4 0 01
8 1 10

Table 2: Length Encoding for Doubles

Analogously, Table 2 shows the codes for the lengths
of a compressed double. Here, recall that a compressed
double can either be 4 or 8 bytes long ifNULLvalues are
not allowed, and 0, 4, or 8 bytes long ifNULLvalues are
allowed so that the length can be coded using only one
bit in the first case and two bits in the second case.

If a tuple has several variable-length compressed
fields, then we will try to pack the length codes of as
many fields as possible into a single byte, but we will
make sure at the same time that the code of a single field
can be retrieved by probing a single byte only. We will
illustrate this in the following example. The example
compresses tuples that consist of four integer fields with
NULLallowed, one integer field with aNOT NULLcon-
straint, and a double field with aNOT NULLconstraint:

R = 〈a:int, b:int, c:double not null,
d:int, e:int, f:int not null 〉

If all fields are compressed as described in Sec-
tion 3.2.1, then the length codes of all six fields are
packed into two bytes in the following way:

Byte 1
— bita1 bita2 bita3 bitb1 bitb2 bitb3 bitc1

Byte 2
bitd1 bitd2 bitd3 bite1 bite2 bite3 bitf1 bitf2

Here,bitxi refers to theith bit of the length encoding for
Attributex, and the first bit of Byte 1 is not used.

3.3.3 Length Decoding

Given the encoding scheme from the previous section, it
is easy to determine the length of a compressed field of
a specific tuple: we simply need to access the right bits
for this field in the length-encoding part of the tuple and
look up the length in an encoding table such as Table 1
or 2. Before, we can actually access the field, however,
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Figure 2: Decoding Byte 1

we need to solve another problem: we have to determine
theoffsetof the field which depends on the length of all
the other (compressed) fields stored in the tuple before
that field.

A naive algorithm to determine the offset of, say, the
ith compressed field would be to loop fromj = 1 to i−1,
decode the length of thejth field, and compute the off-
set as the sum of these lengths. This algorithm would,
however, have very high CPU overhead because it would
involve decoding the length information ofi − 1 fields.
Fortunately, we can do much better by materializing all
possible offsets a field can have in so-calleddecoding ta-
bles. To see how this works, let us continue our example
from above and look at one concrete tuple of RelationR.
If the compressed value ofa of this tuple has 2 bytes,
the value ofb has 0 bytes, the value ofc has 8 bytes, the
value ofd has 3 bytes, the value ofe has 0 bytes, and the
value off has 4 bytes, then the two bytes that encode the
length of the tuple would look as follows (using the codes
of Tables 1 and 2 and setting the unused bit of Byte 1 to
0):

Byte 1
0 0 1 0 0 0 0 1

Byte 2
0 1 1 0 0 0 1 1

Now, let us determine the offset of Attributee for this
tuple. We first probe the decoding table of Figure 2 with
Byte 1 to find out that with this length encoding, At-
tributesa, b andc combined consume 10 bytes. Then,
we probe the decoding table of Figure 3 with Byte 2 to

0 0 1

1

0

Attr. d Attr. e

7

101

100

99

98

97

96

255

0 3 3 0 3 3

254

Attr. f

1 1 0 0 1
Attr. d Attr. e Attr. f

offset
length encoding

Figure 3: Decoding Byte 2

find out that we need to add another 3 bytes to determine
the full offset for Attributee in this tuple, and to get the
length of Attributee.

In general, we maintaind decoding tables for a relation
whose tuples haved bytes in their length-encoding part.
Every decoding table has2b entries, whereb is the num-
ber of bits used in the corresponding length-encoding
byte; e.g.,b = 7 for Byte 1 andb = 8 for Byte 2 of our
example. Every entry of a decoding table has onetotal
lengthfield (4 bytes) and anoffset(2 bytes) andlength(2
bytes) field for every attribute that is encoded in the cor-
responding byte (see Figures 2 and 3). Given this design,
the offset and length of a compressed field of a tuple can
be determined by the algorithm shown in Figure 4.

To go back to our example, we note that the decod-
ing tables are really very small. RelationR from our
example would require one decoding table of size 2 KB
(128 entries∗ 16 bytes) and one decoding table of size 4
KB (256 entries∗ 16 bytes). So, we expect that these de-
coding tables can be kept in main memory most of the
time just like any other meta data. If we are willing to
invest more memory, we could materialize all possible
offsets into a single table (rather than one table per byte)
and achieve decoding in constant time. For RelationR,
such auniversaldecoding table would require about 0.5
MB of main memory (215 entries∗16 bytes). (Of course,
there are also many ways of compromise conceivable.)



Input: Attribute identifierattr, encoding informationcodeByte[]of a tuple, an array of decoding
tablestable[][] , andencInwhich is the number of the Byte incodeBytethat records
attr’s length code

Output: offset ofattr in the tuple, length of the value ofattr in the tuple
1: offset = 0;
2: for j = 1 to encIn - 1do
3: offset = offset + table[j][codeByte[j]].total
4: return 〈 offset + table[encIn][codeByte[encIn]].offset(attr),

table[encIn][codeByte[encIn]].length(attr)〉

Figure 4: Algorithm to Decode Compression Information

4 Executing Queries on Com-
pressed Data

In the previous section, we showed how compression
techniques can be integrated and implemented efficiently
in the storage manager of a database system. In this
section, we will describe the necessary adjustments to
carry out queries efficiently in the presence of compres-
sion. Obviously, compression could be integrated into
a database system without any adjustments to the query
execution engine and query optimizer of a database sys-
tem by simply encapsulating compression in the storage
manager. Recall from the introduction, however, that
compression can easily turn an IO-bound query into a
CPU-bound query; since textbook query execution en-
gines have been designed to minimize IO costs, they need
to be extended to minimize CPU costs, too, in order to
take full advantage of database compression. Further-
more, compression can impact the choices made by an
optimizer; for example, the best join orders in a com-
pressed and uncompressed database may differ.

In the following, we will first present the design of our
query execution engine and then discuss the query opti-
mization issues. At the end of this section, we will give a
brief report on the status of our system and on our expe-
riences in building the system. Section 5, then, presents
the results of experiments that evaluate the performance
of our engine.

4.1 Query Execution Engine

To achieve lowest-possible CPU overhead during query
execution, we propose the following two techniques: (1)
an extended query iterator model, and (2) evaluation
of expressions using a virtual machine which interprets
assembler-like programs. The first extension is necessary
in order to avoid unnecessary copying of tuples during
query execution and to avoid decompressing any fields
twice for the same query. The second extension is neces-
sary in order to minimize the cost to evaluate expressions
(e.g., predicates and aggregate functions).

4.1.1 Extended Iterator Model

In the classic iterator model, every query operator such
astable scan, index scan, sort,etc. (called iterator) pro-

vides three methods [Gra93]:open, next, andclose. open
allocates resources (main memory, disk for temporary re-
sults) and does all computations that need to be carried
out before the iterator can actually produce results.next
delivers the result tuples of an iterator one at a time.close
releases all the allocated resources and does other clean-
ing up work.

Here, we are concerned about the interface of thenext
method of an iterator. In the classic iterator model,
next delivers the next result tuple by returning a (main
memory) pointer to that tuple. We generalize this in-
terface and allow thenextmethod to return anarray of
pointers (rather than just a single pointer). This exten-
sion is necessary to implement a technique calledim-
plicit joins which is known since the seventies and which
avoids copying tuples when pipelined join methods are
used [Pal74]. To see how implicit joins save CPU costs
to copy tuples, consider an index nested loop join (NLIJ)
between Relations A and B. In the classic iterator model,
the NLIJ iterator must copy matching tuples from A and
B into a result tuple in order to return a pointer to the
result tuple. With implicit joins, the NLIJ iterator sim-
ply returns two pointers for every pair of matching tuples
from A and B without copying any tuples from either re-
lation.

The second step we take to generalize the interface of
thenextmethod in the iterator model is to allow iterators
to return values of fields of tuples in addition to just re-
turning pointers to tuples. This extension is necessary to
avoid decompressing a field twice in the course of evalu-
ating a query. Consider the following example of an Em-
ployee database: a table scan iterator onEmpevaluates
the predicateEmp.salary > 100,000 and pipes the
result into an NLIJ iterator that evaluates the predicate
Emp.salary < 1% * Dept.budget (among oth-
ers). Now, assume that theEmp.salary field is com-
pressed and consider that thenextmethod of an iterator
could only return pointers to tuples. In this case, the ta-
ble scan iterator would decompress theEmp.salary
fields of all Emp tuples a first time to evaluate the
Emp.salary < 100,000 predicate. The table scan
iterator would pass pointers to the resulting (compressed)
Emp tuples to the NLIJ iterator so that the NLIJ itera-
tor would have to decompress theEmp.salary field
of all resulting tuples a second time in order to evaluate
its join predicate. If we generalize the interface of the



LEQ DAT ZC C 4 ’1998-02-09’ 1
AVMSTOP

Figure 5: AVM Prg:shipdate ≤ 1998-02-09

nextmethod, then the table scan iterator could return the
decompressed values of theEmp.salary fields in ad-
dition to the pointers to the resultingEmptuple, and the
NLIJ iterator could use the uncompressed values gener-
ated by the table scan iterator.

To conclude, the interface of thenext method in our
extended iterator model now becomes (in C++):

bool next(ZReg[ ]& regSet);

Thenextmethod of an iterator returnsFALSEwhen the
iterator is done and cannot find any (new) result tuples;
next returnsTRUEotherwise. Results (i.e., pointers to
tuples and values of fields) are passed throughregSet
which is an array of typeZReg. ZReg is a C++union
type that can take the uncompressed value of the C++
pendant of any common SQL data type (i.e., integer, dou-
ble, date, etc.) as well as internal types used by the query
engine such asRID andvoid ∗. For reasons that will
become clear in the next subsection, we call every entry
of theregSet array aregister.

4.1.2 The AODB Virtual Machine

To date, there has been very little published work on
the efficient evaluation of expressions in database sys-
tems. The intuitive approach is to generate an opera-
tor tree for every expression at compile time of a query
and to interpret the operator tree during query execution,
and as far as we know, this approach is used by Ora-
cle. The operator-tree approach was also the approach
that we had initially implemented for the AODB system.
Going through an operator tree, however, involves high
CPU costs, and in the experiments carried out with our
first version of AODB, these CPU costs were so high that
they ate up all the benefits we achieved by saving IO costs
with compression. We, therefore, developed a more effi-
cient method which is based on generating assembler-like
statements at compile time and interpreting these state-
ments with a special virtual machine that we call AVM2.
The only references to a similar idea we found in the lit-
erature are an (old) IBM technical report [LW79] and a
paper that describes how a rule-based system can be used
to generate such statements for a given query [FG89]. We
were also told that IBM DB2 uses assembler-like state-
ments to evaluate expressions, but such details of DB2
have not yet been published.

As an example, Figures 5 and 6 show two AVM pro-
grams that we used to implement Query 1 of the TPC-D
benchmark [TPC95]. The first program implements the
shipdate predicate of this query, and the second AVM
program implements thesum(extended price ∗

2AVM stands for AODB Virtual Machine.

SUBSF8 CZ C 1.0 8 13
ADDSF8 CZ C 1.0 9 14
MULSF8 ZZ C 7 13 17
MULSF8 ZZ A 17 14 16
AVMSTOP

Figure 6: AVM Prg: Aggregate Function

(1 - discount) ∗ (1 + tax)) aggregate func-
tion of this query. The instructions of all AVM programs
operate on the registers that are passed around in the iter-
ators; that is, the instructions take their parameters from
registers and they write their results into registers. For
example, theLEQ statement (≤) of Figure 5 compares
the 10th attribute of the tuple pointed to by Register 14
with the constant1998-02-09 and writes the result
into Register 13. Going into the details of the instruc-
tion set supported by AVM is beyond the scope of this
paper. It should, however, become clear that AVM al-
lows more efficient expression evaluation than operator
trees just as register-based programming languages (e.g.,
C++) are more efficient than stack-based programming
languages (e.g., Java). Note that the statements of AVM
are machine-independent and that the AVM statements
have nothing compression-specific about them.

On the iterator side, iterators get AVM programs (in-
stead of operator trees), and iterators call AVM to execute
these programs, evaluate expressions, and load registers
as a side effect: scan iterators get an AVM program for all
the predicates they apply, join iterators get separate AVM
programs for their primary and secondary join predicates,
and group-by iterators get several AVM programs in or-
der to compute aggregate values (separate programs to
initialize, compute, aggregate, and store the aggregate
values). All iterators, except pipeline breakers such as
temp, get an AVM program to be applied to the result tu-
ples of the iterators; usually, these AVM programs only
involve copying a pointer to the result tuple(s) into a reg-
ister so that it can be consumed by the next iterator and
used as a parameter in the AVM program of the next iter-
ator. Again note, that the implementation of the iterators
have nothing compression-specific about them (just like
AVM) so that the same set of query iterators can be ap-
plied to compressed and uncompressed databases.

4.2 Query Optimization

To get the best possible query plans in the presence of
compression, two small adjustments to the (physical)
query optimizer are required. These adjustments are nec-
essary because the best query plan for an uncompressed
database might not be the best query plan for a com-
pressed database. Since compression impacts the size
of base relations and intermediate results, compression
(ideally) also impacts join ordering and the choice of join
methods. An (index) nested-loop join might, for exam-
ple, be favorable for a query in a compressed database
because the inner relation fits in memory due to com-



pression, whereas a merge join might be favorable for the
same query in an uncompressed database because neither
relation fits in memory due to the absence of compres-
sion. One important point to notice, however, is that a
query plan that shows good performance in an uncom-
pressed database will also show good performance in
a compressed database so that an optimizer that lacks
these adjustments will produce acceptable plans for com-
pressed databases. The purpose of the two adjustments
we list in the following, therefore, is to findas-good-as-
possiblequery plans for compressed databases.

The first and most important adjustment is to make the
cost model of the optimizer “compression-aware”. If the
optimizer’s cost model is compression-aware, the opti-
mizer will automatically choose the (index) nested-loop
join plan in the example of the last paragraph because
this plan has lower cost than the merge join plan, and
the optimizer will also automatically generate a plan with
the right join order in the presence of compression. To
make the optimizer’s cost model “compression-aware,”
we need to carry out the following two steps:

1. The cost model ought to account for the CPU costs
to decompress fields of tuples. Given the techniques
presented in Section 3 and the optimizer’s estimates
for the cardinality of base relations and temporary
results, these CPU costs are very easy to predict,
and therefore, can easily be considered in the op-
timizer’s cost model.

2. The memory requirements and disk IO estimates of
every iterator need to be adjusted because they are
significantly smaller in the presence of compression.
The exact savings due to compression are difficult to
predict because they depend on the characteristics of
the data set; for the light-weight compression tech-
niques we used in this work, however, we found that
savings of 50% per compressed attribute is a good
rule of thumb.

The second adjustment is to make the optimizer decide
whether temporary results should be compressed or not.
If large temporary results must be written to disk (e.g.,
for sorting), it is sometimes good to compress those fields
that are not already compressed (e.g., results of aggregate
functions) first in order to save disk IO. If, however, the
sort can be carried out in memory completely, because
the temporary results are small or if there are no CPU
cycles left to be spent, then it does not make sense to
compress fields because no advantage can be expected
from compression.

4.3 Implementation Status

We have implemented the extensions to the storage man-
ager described in Section 3 and most of the extensions to
the query engine described in this section as part of the
AODB project using C++ as a programming language.
At this point, the only component that is not working well

is the query optimizer. This deficiency is, however, not
due to compression. It is due to the fact that the sys-
tem has been growing dramatically in the last couple of
months, so that we have not been able to keep the opti-
mizer up-to-date in order to consider all different join and
group-by methods we have implemented.

One important observation we made is that our
changes to the query execution engine (extended itera-
tor model and AVM) helped to improve the performance
of queries on compressedand uncompressed databases:
in both cases, we observed savings in CPU costs by more
than a factor of two due to these changes. Also, integrat-
ing compression into the storage manager did not affect
the performance of queries on uncompressed data (see
Section 3.3.1). Not affecting the performance of queries
on uncompressed data was very important for us because
it allowed us to explicitly study the performance trade-
offs of database compression, which is the subject of the
next section.

5 TPC-D Benchmark Results

In this section, we will present the results of running the
TPC-D benchmark [TPC95] on a compressed database
using the techniques described in the previous two sec-
tions. To study the performance tradeoffs of database
compression, we compare these results with the results
of the TPC-D benchmark on an uncompressed database.
We will first describe the details of our implementation
of the TPC-D benchmark. Afterwards we will address
the benchmark results including the database sizes, the
bulk loading times, and the running times of the seven-
teen queries and two update functions.

5.1 Implementation of the TPC-D Queries
and Update Functions

As mentioned before, we used the AODB database sys-
tem as an experimental platform. AODB is pretty much a
textbook relational database system with the special fea-
tures described in Sections 3 and 4 (e.g., extended iterator
model, AVM, etc.). Since the AODB optimizer currently
does not work very well, we had to craft the query plans
for the TPC-D queries and update functions manually. In
doing so, we were guided by the query plans produced
by commercial database systems for the TPC-D queries.
The plans were mostly left-deep with group-by operators
sitting at the top of the plans (i.e., we did not consider
any early aggregation alla [YL94, CS94]). GRACE-hash
and blockwise hashed nested-loop were the preferred join
methods [HR96, HCLS97], and we also used hashing for
most of our group-by operations. We had secondary non-
clustered B+ tree indexes3 on all date fields and clus-
tered indexes on the keys of all tables. It turned out that
B+ trees are not useful to improve the performance of

3We used the B+ tree implementation of the Berkeley Database
toolkit which can be found athttp://www.sleepycat.com/ .



the heavy-weight TPC-D queries, so that we did not use
the B+ trees in ourregular implementation of the TPC-
D benchmark. To show the impact of indexes on com-
pression for TPC-D style queries, however, we will show
the running time of a TPC-D query with an index plan.
Memory was allocated in such a way that all operators
read and wrote large blocks of data (usually at least 16
pages) to disk in order to avoid disk seeks. The plans
and memory allocation we used for the compressed and
uncompressed databases were identical; that is, we first
found a good plan and memory allocation for a query us-
ing the uncompressed database, and then ran this plan
on the compressed and uncompressed databases. As de-
scribed in Section 4.2, this approach was conservative: it
might have been possible to achieve better response times
on the compressed database with compression-specific
query plans so that the results we present can, in some
sense, be seen as a lower bound for the performance im-
provements that can be achieved by compression in the
TPC-D benchmark.

To compress the TPC-D database, we used the follow-
ing compression techniques: we used numeric compres-
sion as described in Section 3.2.1 for all integers and dec-
imals, and we used dictionary-based compression for all
flag fields as described in Section 3.2.3. We turned all
CHAR(n) strings intoVARCHARsand compressed the
length information ofVARCHARsas described in Sec-
tion 3.2.2. We did not use any Huffman coding or so to
further compress strings. We felt that using such sophisti-
cated compression techniques for long string fields (e.g.,
commentsin the TPC-D tables) would have been unfair
in favor of compression because using such compression
techniques would have resulted in high compression rates
(i.e., high IO savings) without paying the price for this
compression, as these fields are rarely used in the TPC-D
queries. Also, we did not compress any date fields, and
we did not compress theREGIONandNATIONtables as
they fit into a single page on disk.

We ran all TPC-D queries and update functions on
compressed and uncompressed databases with scaling
factor SF=1. The machine we used was a Sun Ultra II
workstation with a 300 MHz processor and 256 MB of
main memory. To execute the queries, however, we lim-
ited the size of the database buffer pool to 24 MB. The
databases were stored on a 9 GB Seagate Barracuda disk
drive, and we had another 9 GB Seagate Barracuda disk
drive to store temporary results of queries. The operat-
ing system was Sun Solaris Version 2.6. We configured
AODB to use 4 KB as the page size.

5.2 Size of the Compressed and Uncom-
pressed Databases

Table 3 shows the size of the compressed and un-
compressed databases. Depending on the TPC-D ta-
ble, we achieved compression rates between 10% and
45%. The highest compression rate we achieved was for
the LINEITEM table because theLINEITEM table has

Table Compressed Uncompressed

lineitem 427,360 758,540
order 132,164 177,900
partsupp 112,588 124,600
part 24,120 29,680
customer 22,916 28,256
supplier 1,412 1,640
nation 4 4
region 4 4

total 720,568 1,120,634

Table 3: Size in KB of the Compressed and Uncom-
pressed Tables (SF=1)

Table Compressed Uncompressed

lineitem 7:08.5 5:03.6
order 1:28.5 59.1
partsupp 42.9 36.2
part 13.9 9.2
customer 11.2 8.2
supplier 1.2 1.0

total 9:46.2 6:57.3

Table 4: Time (min:secs) to Bulkload the TPC-D
Database (SF=1)

many numerical values (integers, decimals etc.) that we
did compress. On the other hand, the fraction of (long)
string values for which we only compressed the length in-
formation was quite high in the other tables so that we did
not achieve high compression rates for these tables. As a
rule of thumb, we found that our light-weight compres-
sion techniques achieved about 50% compression rate on
those fields which we did compress. As stated above, we
did not compress theREGIONandNATION tables be-
cause they fit into a single 4 KB page.

5.3 Loading the Compressed and Uncom-
pressed Databases

Table 4 shows the times to bulkload the compressed and
uncompressed databases. We observe that the bulkload-
ing times tend to be 20% to 50% higher for compres-
sion. While compression does reduce the cost to write
(new) pages to disk, bulkloading is a CPU-bound oper-
ation because bulkloading involves parsing the input file
one character at a time. Typically, we had more than 90%
CPU utilization during bulkloading both the compressed
and the uncompressed database, andcompressingtuples
which is part of bulkloading has very high CPU over-
head; much higher in fact thandecompressingtuples. We
do not show the bulk loading times for theREGIONand
NATIONtables in Table 4 because they were too small to
be measured.



5.4 Running Times of the TPC-D Queries
and Update Functions

Regular TPC-D Results Table 5 lists the running
times, CPU costs, and CPU utilization of the seventeen
queries and two update functions of the TPC-D bench-
mark. As described in Section 5.1, these results were ob-
tained using the best possible plans for the uncompressed
database, and these plans did not exploit indexes. Just
looking at the results for the seventeen queries, we ob-
serve that compression never looses; that is, in all these
queries the benefits due to reduced IO costs outweigh the
CPU overhead of compression. The performance im-
provements due to compression, of course, depend on
the kind of query; i.e., the selectivity of the predicates,
the number of joins and the tables involved in the joins,
the presence ofORDER BYandGROUP BYclauses, and
on the columns used in the expressions and in the result
of the query. In six cases (Q1, Q4, Q6, Q13, Q15, and
Q17), we found compression to improve the running time
by 40% or even more, whereas we only found one case
(Q16) in which the savings in running time was less than
20%.

Looking closer at the CPU costs and CPU utilizations
of the queries, we can see how important it is to imple-
ment compression in such a way that the CPU overhead
of compression is as small as possible. None of these
queries has 100% CPU utilization, but CPU utilizations
of about 70% are pretty common, if compression is used.
A naive decoding algorithm that does not take advantage
of decoding tables(see Section 3.3.3), alone, would triple
the CPU costs of decompression for most queries. In-
creasing the CPU costs by a factor of three would not
only eat up all the benefits of reduced disk IO, it would
result in overall much higher running times for the com-
pressed database than for the uncompressed database.

Turning to the results of the update functions, we ob-
serve that compression does increase the running time
of update function UF1 by a factor of two. UF1 in-
serts about 7500 tuples which are specified in a text file
into the database, and we see basically the same perfor-
mance degradation due to compression as in the bulk-
loading experiments (see Table 4). The tuples can be ap-
pended to theORDERandLINEITEM tables with fairly
little disk IO cost so that CPU costs for parsing the text
file dominate the running time of UF1 and compression
looses due to the high cost to compress tuples. For up-
date function UF2, on the other hand, compression wins
by a significant margin. Update function UF2 deletes
about 7500ORDERandLINEITEM tuples and involves
a fair amount of disk IO in order to find the right tuples
to delete. Compression saves costs to carry out these
disk IOs and has an additional advantage in this partic-
ular case: compression has (almost) no additional CPU
overhead in this case because tuples that are deleted need
not be decompressed. (Only the primary keys need to be
decompressed in order to find the right tuples to delete.)

Compressed Uncompressed

Q10i 93.3 134.0

Table 6: Running Time (secs): Query 10, Index Plan

Impact of Indexes Table 6 shows the running time of
a plan for Query 10 that uses theO ORDERDATEindex
to evaluate the range predicate of that query. (All other
queries showed a deterioration of performance for both
the compressed and the uncompressed databases when
using indexes.) What we see is that the running time
of this plan is again significantly better with compres-
sion than without compression, and that is for the same
reasons than in the other experiments: reduced disk IO
due to compression. In fact, the use of the index slightly
improved the running time of this query in the com-
pressed database whereas it made the running time of
the query worse in the uncompressed database. In gen-
eral, indexes do not significantly affect the performance
tradeoffs of database compression. In cases in which sig-
nificant amounts of base data must be read using an in-
dex (e.g., TPC-D style queries), compression reduces the
amount of disk IO because it is the cause for higher buffer
hit rates (normal index scans) or because simply less data
must be scanned (index scans with RID sorts [CK98]).
In cases in which only small amounts of data must be
read using an index, compressed databases show about
the same performance as uncompressed database: in such
cases, compression does not result in significant disk IO
benefits, but compression does not result in significant
CPU overheads either.

6 Conclusion

In this work, we showed how compression can be inte-
grated into a database system. While there has been a
large body of related work describing specific database
compression algorithms, this paper is the first paper that
really describes in full detail and at a low level how these
algorithms can be built into a database system. Our expe-
rience shows that such low-level considerations are very
important to make compression perform well because the
execution of many queries involves the decompression of
millions of tuples. We defined the layout of compressed
tuples in which variable-length fields are separated from
fixed-length fields and compressed fields are separated
from uncompressed fields. This layout allows direct ac-
cess to fixed-length fields, and it allows to compress in-
dividual fields without affecting other (uncompressed)
fields. Furthermore, we developed very fast encoding and
decoding algorithms so that compressed fields can be ac-
cessed almost as fast as uncompressed fields.

In addition to the low-level storage manager issues for
the integration of compression, we described the (novel)
design of our AODB query execution engine with its ex-
tended iterator model and AVM for very fast expression
evaluation during query execution. The development of



Query Compressed Uncompressed
Update Time CPU %-CPU Time CPU %-CPU

Q1 42.4 33.3 78.5 73.7 22.7 30.8
Q2 13.7 5.0 36.5 17.9 3.0 16.8
Q3 88.5 52.0 58.8 126.0 43.4 34.4
Q4 67.9 38.8 57.1 113.3 33.7 29.7
Q5 61.5 42.3 68.8 98.4 31.6 32.1
Q6 43.0 22.8 53.0 74.2 15.8 21.3
Q7 71.9 46.5 67.7 105.8 34.5 32.6
Q8 66.8 38.4 57.5 104.1 23.6 22.7
Q9 136.6 95.4 69.8 174.8 78.0 44.6
Q10 96.1 45.5 47.4 131.5 34.1 25.9
Q11 11.4 4.6 40.4 14.9 3.0 20.1
Q12 81.2 69.1 85.1 106.2 44.7 42.1
Q13 57.2 27.9 48.8 97.0 20.9 21.6
Q14 47.8 24.0 50.2 78.6 16.6 21.1
Q15 44.1 23.8 54.0 75.1 18.0 24.0
Q16 14.6 13.0 89.0 16.7 11.0 65.9
Q17 74.4 39.6 53.2 156.9 31.0 19.8
UF1 0.6 0.6 100.0 0.3 0.3 100.0
UF2 124.4 30.5 24.5 216.1 36.3 16.7

total 1237.4 694.6 56.1 1915.5 534.7 27.9
geometric mean 41.4 23.6 57.0 59.6 17.3 29.0

Table 5: TPC-D Power Test: Running Time (secs), CPU Cost (secs), CPU Utilization (%)

the highly tuned AODB query engine was triggered by
our work on high-performance compression, and AODB
made it easy to integrate compression-specific adjust-
ments such as avoiding repeated decompression of the
same fields using an extended iterator model. There is,
however, really nothing compression-specific about the
AODB query engine, and the enhancements are good for
any kind of database system, including systems that pro-
vide no support for compression at all.

As a result of all these efforts, we were able to show
that compression can significantly improve the perfor-
mance of database systems, in addition to providing disk
space savings. We implemented the TPC-D benchmark
on a compressed and an uncompressed database and saw
that compression improves the running times of queries
by a factor of two or slightly more in many cases. For
read-only queries, we could not find a single case in
which compression would result in worse performance.
These observations indicate that compression should def-
initely be integrated into decision support systems (or
data warehouses) that process a great deal of TPC-D style
queries. The experiments also showed that CPU costs
continue to be an important factor of query performance,
even considering today’s hardware trends. It is, therefore,
important to implement the techniques proposed in this
work in order to achieve good performance with com-
pression.

While compression shone brightly for read-only
queries, we did see significant performance penalties for
insertandmodifyoperations. In particular,insertopera-
tions tend to be very CPU-bound and with the techniques
we use, compressing a tuple has significantly higher CPU

cost than decompressing a tuple so that we cannot foresee
that compression is going to improve the performance of
OLTP-style applications any time soon.
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