
Comparative Analysis of Six XML Schema Languages�

Dongwon Lee Wesley W. Chu

Department of Computer Science

University of California, Los Angeles

Email: fdongwon,wwcg@cs.ucla.edu

Abstract

As XML [5] is emerging as the data format of the
internet era, there is an substantial increase of the
amount of data in XML format. To better describe
such XML data structures and constraints, several
XML schema languages have been proposed. In this
paper, we present a comparative analysis of six note-
worthy XML schema languages.

1 Introduction

As of June 2000, there are about a dozen of XML
schema languages that have been proposed. Among
those, in this paper, we choose six schema languages
(XML DTD [5], XML Schema [4, 21], XDR [9, 14, 16],
SOX [8], Schematron [10, 17], DSD [11, 12]) as repre-
sentatives1.

Our rationale in choosing the representatives is as
follows: 1) they are backed by substantial organi-
zations so that their chances of survival are high
(e.g., XML DTD and XML Schema by W3C, XDR
by Microsoft, DSD by AT&T), 2) there are publi-
cally known usages or applications (e.g., XML DTD

in XML, XDR in BizTalk, SOX in xCBL), 3) the lan-
guage has a unique approach distinct from XML DTD

(e.g., SOX, Schematron, DSD). First, we brie
y review
each schema language.

1.1 XML DTD

XML DTD (DTD in short), a subset of SGML DTD,
is the de facto standard XML schema language of the
past and present and is most likely to thrive until XML

Schema �nally arrives. It has limited capabilities com-
pared to other schema languages. Its main building
block consists of an element and an attribute. The
real world is typically represented by the use of hier-
archical element structures.

�The title and structure of this paper imitate those of [1] in

the hope of being a sequel.
1These languages are still evolving at the time of writing.

1.2 XML Schema

XML Schema is an ongoing e�ort of W3C to aid and
eventually replace DTD in the XML world. XML

Schema aims to be more expressive than DTD and
more usable by a wider variety of applications. It
has many novel mechanisms such as inheritance for
attributes and elements, user-de�ned datatypes, etc.

1.3 XDR

First known as XML-Data, then later trimmed and
improved to XDR (XML-Data Reduced), this lan-
guage is a joint e�ort of Microsoft and others and is
being used in Microsoft's BizTalk framework. XDR is
heavily in
uenced by another proposal co-developed
by IBM and Microsoft, DCD (Document Content De-
scription), and thus shares many similar features.

1.4 SOX

SOX (Schema for Object-Oriented XML) is an alterna-
tive schema language for de�ning the syntactic struc-
ture and partial semantics of XML document types.
As the name implies, it extends DTD in an object-
oriented way by allowing extensible data types and
inheritance among element types. The current ver-
sion, 2.0, is being developed by Commerce One.

1.5 Schematron

Schematron, created by Rick Jelli�e, is quite unique
from others in that it focuses on validating schemas
using patterns instead of de�ning schemas. Its schema
de�nition is simple enough to be de�ned in a single
page, yet provides very powerful constraint speci�ca-
tion via XPath [7]. The latest version is 1.4.

1.6 DSD

DSD 1.0 was co-developed by AT&T Labs and BRICS
with the goals of context-dependent description of el-
ements and attributes,
exible default insertion mech-
anisms, expressive power close to XSLT [6], etc. Like

Schematron, DSD has a strong edge on schema con-

straints.

1.7 Other Languages

In addition, DCD [3], DDML [2], Assertion Gram-
mars [18], RELAX [15] have been proposed.

2 Features Classi�cation

In the following, we denote a constant value with sin-
gle quotes regardless of the language speci�cation for
simplicity. Furthermore, any attribute A or element
E in the language is denoted by hAi or hEi. When
a schema language supports a certain feature fully or
partially, we denote it as Yes or Partial. Otherwise,
we denote No. Furthermore, when there is no explic-
itly equivalent construct in the language, but the fea-
ture can be simulated using other constructs with rea-
sonable complexity, we consider the feature supported
by the language.

2.1 Schema

1. Syntax in XML: Using XML syntax for the schema
language brings several bene�ts [13]: 1) users do not
have to learn new proprietary syntax, 2) the schema
language can be readily applicable to existing XML
applications (e.g., editor, browser), 3) the schema �le
can be stored in a XML storage system along with
XML documents, and 4) the schema language is ex-
tensible. All the schema languages except DTD are
written in XML syntax:

DTD: No XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

2. Namespace: All languages except DTD and DSD

support namespace.

DTD: No XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: No

Suppose one wants to de�ne the book element by
reusing the address element de�ned elsewhere (de-
noted as URI) and de�ning his own title element.
This can be written in XML Schema as follows:

<schema xmlns:z='URI' ...>

<element name='book'>

<complexType>

<element name='title' type='string'>

<element name='address' type='z:address'>

</complexType>

</element>

</schema>

Similarly, in XDR:

<ElementType name='title' dt:type='string'/>

<ElementType name='book' xmlns:z='URI'>

<element type='title'><element type='z:address'>

</ElementType>

SOX supports elements hnamespacei to declare names-
pace and two attributes hpre�xi and htypei to qualify
names.

<namespace prefix='z' namespace='URI'/>

<elementtype name='book'>

<model>

<element type='title'>

<element prefix='z' type='address'>

</model>

</elementtype>

Similarly, Schematron provides an attribute ns for the
element hschemai.

3. Include & import: Sometimes, it is convenient to
pull in externally de�ned schema fragments to the cur-
rent schema. This is especially true when the schema
gets larger; it becomes more desirable to have modular
schema de�nitions for better maintainence and read-
ability. Several schema languages support this feature.
If the newly pulled-in fragments can have only the
same target namespace as the current schema, then
we refer to it as include. Otherwise, we refer to it as
import . First, Include is supported as follows:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: Yes

In XML Schema, using hinclude
schemaLocation='URI'i is conceptually equiva-
lent to replacing the include clause with all the
de�nitions in the URI. The namespace of the included
fragments must be the same as that of the current
schema. In SOX, a construct hjoini allows schema
de�nitions belonging to the same namespace to be
pulled in. Similarly, hincludei is supported in DSD as
well.

Furthermore, Import is supported as follows:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: No

In XML Schema, a construct himporti exists. By im-
porting multiple namespaces, XML Schema allows def-
initions and declarations contained in schemas under
di�erent namespaces. In SOX, special processing indi-
cator h? import ?i is used to import schema that can
override the default namespace declared in the current
schema.

2.2 Datatype

Datatype can be categorized into two types: simple or
complex . A simple type cannot have element content

nor carry attributes while a complex type can. Al-
though most schema languages support simple types
separately, the support of complex type is a bit fuzzy
due to the mixed de�nition of complex type and ele-
ment type. Therefore, here, we only explicitly com-
pare features of the simple type. The features of the
complex type are interspersed through Sections 2.4
and 2.5.

1. Built-in type: This is either a primitive or derived
simple type provided by the schema language speci-
�cation. Most schema languages, except Schematron
and DSD, support an array of built-in types includ-
ing the plain string and XML-related types (e.g., ID,
NMTOKEN). The number of such built-in types are:

DTD: 10 XML Schema: 37 XDR: 33
SOX: 17 Schematron: 0 DSD: 0

While DTD supports only XML-related primitive
types, XML Schema supports an extensive set of 37
built-in types, covering most types being used in gen-
eral programming languages. So does XDR or SOX.
Since the focus of Schematron is validating XML struc-
ture, it does not provide any explicit built-in types.
Similarly, DSD has no built-in types. However many
types can be easily simulated through its support of
regular expressions.

2. User-de�ned type: When schema designers con-
sider certain types be de�ned as simple types in their
schema, XML Schema, SOX, and DSD provide such a
facility:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: Yes

In XML Schema, new simple types can be created
by deriving from built-in or derived types via the
inheritance. Details will be found in Section 2.5.
In SOX, new datatypes can be de�ned using three
facets henumerationi, hscalari and hvarchari. Al-
though types can be simulated in Schematron, they
are not treated as �rst-class objects as in other lan-
guages. DSD uses a construct hStringTypeDefi along
with a rich set of operators and regular expressions to
support user-de�ned types. For instance, a 9 digit US
zipcode de�nition can be written as follows in DSD:

<StringTypeDef ID='zipcode'>

<Sequence>

<Repeat value='5'>

<CharSet Value='0123456789'>

</Repeat>

<Optional>

<String Value='-'>

<Repeat value='4'>

<CharSet Value='0123456789'>

</Repeat>

</Optional>

</Sequence>

</StringTypeDef>

3. Domain constraint: Not only the type itself, but
also the legal values for the type are important. Some
languages support a set of constructs to limit the valid
domain values for datatypes as follows:

DTD: No XML Schema: Yes XDR: No
SOX: Partial Schematron: Yes DSD: Yes

Towards this feature, XML Schema supports a mul-
titude of facets (e.g., range, precision, length, mask)
and regular expressions. SOX provides a primitive set
of facets including enumeration, min or max value,
maxlength, etc. However, the pattern language is not
supported. Although built-in or user-de�ned types
are not allowed in Schematron, one can simulate such
types using Schematron's support of XPath. For in-
stance, the integer type for the element E can be sim-
ulated as follows [17]:

<rule context='E'>

<assert test='floor(.) = number(.)'>

E can have only integer value.</assert>

</rule>

As shown in the example of the user-de�ned type case,
DSD supports a set of pattern-related operators to
constrain the legal domain for user-de�ned types.

4. Explicit null: It is often preferable to di�erentiate
among unknown, inapplicable or others by supporting
the explicit \null" values.

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: No DSD: No

In XML Schema, there is an attribute hnullablei to
indicate that the element content is null. In a XML
instance document, the element fullname carries an
attribute null='true' to represent the nullness as
shown below:

schema : <element name='fullname' nullable='true'/>

instance: <fullname xsi:null='true'></fullname>

2.3 Attribute

1. Default value: All support this feature.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: No DSD: Yes

In an attribute declaration of DTD, if the declaration
is neither #REQUIRED nor #IMPLIED, then the attribute
value contains the declared default value.

<!ATTLIST list type (bullets|ordered) 'ordered'>

<!ATTLIST form method CDATA #FIXED 'POST'>

Here, the attribute type of the element list has a de-
fault value of \ordered" while the attribute method of
the element form has a �xed value of \POST". Other

languages support default values similarly. The fol-
lowing three snippets in the order of XML Schema,
XDR and SOX illustrate an attribute nm with a de-
fault value \John Doe":

<attribute name='nm' use='default' value='John Doe'/>

<AttributeType name='nm' dt:type='string'/>

<attribute type='fullname' default='John Doe'/>

<attrdef name='nm' datatype='string'>

<default>John Doe</default>

</attrdef>

DSD provides a more sophisticated way of de�ning de-
fault for attributes by associating them with a boolean
expression. For instance, in DSD, one can specify a
default value of \John Doe" for male employees as
follows:

<Default>

<Context><Element Name='employee'>

<Attribute Name='gender' Value='M'/>

</Element></Context>

<DefaultAttribute Name='nm' Value='John Doe'/>

</Default>

2. Choice among attributes: This feature comes in
handy when schema designers want to associate mul-
tiple attributes with an element and constrain validity
to one attribute at any given time.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: Yes DSD: Yes

Schematron and DSD can express the requirement that
exactly one of the two attributes fn and gn must be
present as an attribute of person element as follows:

<rule context='person'>

<assert test='@fn or @gn'>Or semantics</assert>

<assert test='count(attribute::*) = 1'>

Only one attribute</assert>

</rule>

<ElementDef ID='person'>

<AttributeDecl Name='fn' IDType='ID'/>

<AttributeDecl Name='gn' IDType='ID'/>

<OneOf>

<Attribute Name='fn'/><Attribute Name='gn'/>

</OneOf>

</ElementDef>

3. Optional vs. required: In all languages, whether
or not an attribute de�nition is required in a XML
document instance can be expressed.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

To denote an attribute must be present, DTD

uses a keyword #REQUIRED while XML Schema uses

huse='required'i in the attribute declaration. Sim-
ilarly, in XDR, an attribute hrequired='yes'i is
used while in SOX, an element hrequired/i is used
for mandatory attribute de�nition. Schematron

can enforce this feature using a pattern hassert
test='@attribute-name'i. Like XDR, DSD supports
an attribute hOptional='no'i.

4. Domain constraint: Some languages can specify
admissible values for attributes.

DTD: Partial XML Schema: Yes XDR: Partial
SOX: Partial Schematron: Yes DSD: Yes

DTD and XDR provide only the enumeration capa-
bility by which users can list all legal values for the
attribute being de�ned. For instance, the following
snippets show examples of DTD and XDR for such an
enumerated attribute type, RGB:

<!ATTLIST spec RGB (red|green|blue)>

<AttributeType name='RGB' dt:type='enumeration'

dt:values='red green blue'/>

In XML Schema, domain values for simple types can
�rst be constrained using various facets and then new
attributes can be de�ned using the simple types. SOX
provides henumerationi to constrain the attribute do-
main. In Schematron, the support for an arbitrary
domain constraint rule for attribute values is possi-
ble as shown in the case of the domain constraint for
datatypes in Section 2.2. In DSD, one can apply nu-
merous operators such as hUnioni or hRepeati to the
construct hStringTypei to constrain domain values.

5. Conditional de�nition: Often, an attribute a1 of
an element E is relevant only when an attribute a2
has a certain value.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: Yes DSD: Yes

For instance, the following Schematron schema states
that if the element E has the attribute one, then it
must have the second attribute two as well:

<rule context='E'>

<report test='(@one) or not(@one and @two)'>

E cannot have attribute 'one' alone.</report>

</rule>

DSD supports this feature easily using its rich boolean
operators. For instance, the following snippet states
that the salary attribute is de�ned only when the
student is a \TA":

<ElementDef ID='student'>

<If><Attribute Name='TA' Value='yes'>

<Then><Optional>

<AttributeDecl Name='salary'/>

</Optional></Then>

</If>

</ElementDef>

2.4 Element

1. Default value: Elements can have either simple or
complex default values.

DTD: No XML Schema: Partial XDR: No
SOX: No Schematron: No DSD: Yes

In XML Schema, one can provide a string value as the
default value when the element has a simple type.

<element name='fullname' type='string'

default='John Doe'/>

DSD allows both simple and complex defaults for ele-
ments using hDefaultContenti. For instance, one can
specify that a default address is \Los Angeles" and
\CA":

<Default>

<Context><Element Name='address'/></Context>

<DefaultContent>

<city>Los Angeles</city><state>CA</state>

</DefaultContent>

</Default>

2. Content model: The element content model can
be 1) empty, 2) text (including datatype), 3) element,
or 4) mixed (text + element).

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Partial Schematron: Yes DSD: Yes

DTD supports all four content models as follows:

empty : <!ELEMENT o EMPTY>

text : <!ELEMENT p (#PCDATA) >

element : <!ELEMENT q (x?|y*|z+) >

mixed : <!ELEMENT r (#PCDATA|x)* >

Similarly, XML Schema and XDR support the four con-
tent models using a construct hcontenti which sup-
ports values such as \empty", \textOnly", \elemen-
tOnly" (\eltOnly" for XDR), \mixed". Furthermore,
XML Schema allows speci�cation of a datatype for an
element. SOX supports three content models using
constructs hempty/i, hstring/i and helement/i, re-
spectively, but does not explicitly support the mixed
content model. In Schematron, the following XPath
expression can be used as a value for hasserti con-
struct to specify the four content models:

empty : not(*)

text : string-length(text()) > 0

element : count(element::*) = count(*)

mixed : by default

DSD also supports all four models using con-
structs hEmpty/i, hStringType/i, hElement/i and
hAnyElement/i, respectively.

3. Ordered sequence: The order among sub-elements
is consequential.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

In DTD, sub-elements listed with an operator \," obey
the order among them. Likewise, in XML Schema, the
order needs to be preserved unless otherwise speci�ed.
Otherwise, one can explicitly specify that the order is
sequential using a grouping construct hsequencei. In
XDR, the horder='seq'i attribute speci�es that sub-
elements are required to appear in a sequential order.
SOX supports hsequencei content models as well. For
instance, in SOX, the following states that the person
element must have the sub-element fn followed by the
sub-element ln:

<elementtype name='person'>

<model><sequence>

<element name='fn'/><element name='ln'/>

</sequence></model>

</elementtype>

The same schema can be written in Schematron as
follows:

<rule context='person'>

<assert test='(*[position()=1] = fn)

and (*[position()=2] = ln)'>

fn must be followed by ln.</assert>

</rule>

The ordered sequence in DSD is expressed in a simi-
lar fashion by the construct hSequencei in an element
content de�nition.

<ElementDef ID='person'>

<Sequence>

<Element Name='fn'/><Element Name='ln'/>

</Sequence>

</ElementDef>

4. Unordered sequence: The order among sub-
elements is inconsequential.

DTD: No XML Schema: Yes XDR: Yes
SOX: No Schematron: Yes DSD: Yes

Unlike SGML which o�ers an operator & to cre-
ate an unordered sequence, DTD does not o�er
an explicit operator for unordered sequence. In-
stead, one needs to encode all the possible com-
binations of the sub-elements. For instance, to
express an unordered sequence of sub-element (a
& b & c) of SGML in DTD, one has to write
((a,b,c)j(a,c,b)j(b,a,c)j(b,c,a)j(c,a,b)j(c,b,a)) or some-
what incorrectly (ajbjc)* [19]. Using a grouping con-

struct halli in XML Schema, one can specify the un-
ordered sequence. In XDR, the horder='many'i at-
tribute speci�es that sub-elements can appear in any
order. In Schematron, if one does not specify any pat-
terns, then it takes the unordered sequence by default.
In DSD, a single content expression describes a set

of allowed sequences of string data and elements. Sev-
eral content expressions describe all merging of se-
quences, one from each expression. Thus, by clev-
erly using this feature, one can capture "
oating ele-
ments", i.e., mixes of ordered and unordered contents.
This feature in DSD is more expressive than the simple
ordered or unordered content model.

5. Choice among elements: Only one sub-element
among candidates is allowed.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

DTD uses an operator \j" to denote choice among el-
ements. Using a grouping construct hchoicei in XML

Schema, one can specify that only one of the sub-
elements in the group must appear. In XDR, the
horder='one'i attribute speci�es that only one sub-
element can be used. SOX supports the hchoicei con-
tent model for an element. Schematron can express its
choice among elements using rules similar to the case
of choice among attributes in Section 2.3. In DSD, the
construct hOneOfi is supported as follows:

<ElementDef ID='person'>

<OneOf>

<Element Name='fn'/><Element Name='gn'/>

</OneOf>

</ElementDef>

6. Min & Max occurrence: In this scheme, the lan-
guage can support if minimum occurrence is k and
maximum occurrence is l.

DTD: Partial XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Partial

In DTD, the occurrences of elements can be only prim-
itively controlled by the three Kleene operators: 1)
\?" for 0 or 1, 2) \�" for 0 or many and 3) \+"
for 1 or many. In XML Schema, an element decla-
ration carries minOccurs='k' and maxOccurs='l'. In
XDR, hminOccursi and hmaxOccursi attributes spec-
ify how many times an element can appear within an-
other element. In SOX, an element de�nition carries
hoccursi attribute that indicates the number of rep-
etitions of the instanced element. It can take 1) the
three Kleene operators (i.e., ?, �, +), 2) a value of the
form \k,l", or 3) \k,�". In Schematron, this can be
written as hassert test='count(E)>=k'i and hassert
test='count(E)<=l'i. In DSD, the occurrences of ele-
ments can be speci�ed as hOptionali, hZeroOrMorei,

hOneOrMorei, and hUnioni, but cannot be speci�ed
with respect to the exact minimum and maximum
numbers.

7. Open model: An open content model enables ad-
ditional elements or attributes to be present within
an element without having to declare each and every
element. This provides an extensibility mechanism.

DTD: No XML Schema: No XDR: Yes
SOX: No Schematron: Yes DSD: No

In XDR, the model is open by default. One
has to specify a closed model explicitly with
hmodel='closed'i. Suppose, for instance, one has the
following person element de�nition (the city and
state elements are de�ned elsewhere):

<ElementType name='address' model='closed'>

<element type='city'/><element type='state'/>

</ElementType>

<ElementType name='person'>

<element type='address'/>

</ElementType>

This de�nition states that the address element can
have only two sub-elements city and state while the
person element can have a sub-element address and
possibly others since it is an \open" content model.
Thus, the following XML document instance is valid
although the unknown element name is added to the
person element.

<person>

<address>

<city>Los Angeles</city><state>CA</state>

</address>

<name>John Doe</name>

</person>

In Schematron, the content model is open by de-
fault. The closed model also can be expressed using a
count() function in XPath. For instance, the follow-
ing schema states that the person element is closed
(when the name and address are all the sub-elements
of the person):

<rule context='person'>

<assert test='count(name|address) = count(*)'>

There is an extra element.</assert>

</rule>

In languages that support \any" element concept,
since any well-formed XML fragment is allowed for the
any element, the open model can be simulated in some
sense. However, since this requires the \any" element
be de�ned in the schema beforehand, it is less
exible
than the explicit open model.

8. Conditional de�nition: Often, elements are allowed

only in certain situations.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: Yes DSD: Yes

For instance, the following Schematron schema states
that, in HTML, the element input can appear only if
it is inside the element form.

<rule context='E'>

<report test='not(parent::form) and input'>

Element input cannot appear.</report>

</rule>

DSD supports this feature using its boolean operators.
The usage is similar to the case of the conditional
de�nition for attributes.

2.5 Inheritance

As in object-oriented inheritance, inheritance is done
by extending or restricting the base type. In this sec-
tion, we divide the target of the inheritance into sim-

ple and complex types. When some languages support
inheritance toward attribute and element instead, we
treat them as the simple and complex type inheri-
tance, respectively.

1. Simple type by extension: In this scheme, new sim-
ple types may be created by deriving from other simple
types with more relaxed domain constraint. The set
of legal values of the new type is a superset of that of
the base type. No languages support this feature.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: No DSD: No

2. Simple type by restriction: The set of legal values
of the new type is a subset of that of the base type.

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: No

In XML Schema, inheritance among simple types are
allowed as shown in the following example, where a
9 digit US zipcode is created from the base type
string:

<simpleType name='zipcode' base='string'>

<pattern value='[0-9]{5}(-[0-9]{4})?'/>

</simpleType>

By constraining the domain values using the pat-
tern expression, the legal values for the zipcode have
been restricted from the string type. In SOX, new
datatypes may be re�ned from built-in or derived
types. For instance, the new datatype RGB allows only
three values from the color type.

<datatype name='RGB'>

<enumeration datatype='color'>

<option>Red</option>

<option>Green</option>

<option>Blue</option>

</enumeration>

</datatype>

3. Complex type by extension:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: No

XML Schema supports type inheritance using con-
structs hbasei and hderivedBy='extension'i. Newly
added elements are always appended at the end. In
SOX, hextends type='basetype'i is supported, where
appending new elements and attributes are allowed.
Given the person element de�ned elsewhere, the
following example illustrates how the new element
new-person inherits the content model of the person
element and has an additional element address and
attribute email.

<elementtype name='new-person'>

<extends type='person'>

<append>

<element name='address' type='addr'/>

</append>

<attdef name='email' datatype='string'>

</extends>

</elementtype>

In DSD, any de�nition can be rede�ned using the
hRenewIDi and hCurrIDRefi constructs. However,
once the new type is de�ned, the original type is no
longer accessible. Therefore, this feature is for renew-
ing rather than deriving .

4. Complex type by restriction:

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: No DSD: No

In XML Schema, it is possible to derive new types by
restricting the content models of existing types. The
values represented by the new type are a subset of the
values represented by the base type. For instance, the
following schema shows the newly de�ned element E
whose type is ResItemType which is required to have
at least one item sub-element as a new restriction.

<complexType name='ItemType'>

<element name='item' minOccurs='0'>

</complexType>

<complexType name='ResItemType'

base='ItemType' derivedBy='restriction'>

<element name='item' minOccurs='1'>

</complexType>

<element name='E' type='ResItemType'>

2.6 Being unique or key

1. Uniqueness for attribute: All languages support

this feature.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

DTD, XDR, SOX and DSD use ID type for an at-
tribute to ensure uniqueness while XML Schema uses
huniquei where the scope and target object of the
uniqueness are speci�ed by hselectori and hfieldi con-
structs, respectively. Since Schematron does not have
an explicit construct equivalent to ID in DTD, unique-
ness for an attribute must be simulated using pattern
\count()=1".

2. Uniqueness for non-attribute: Schema languages
like XML Schema, Schematron, or DSD specify unique-
ness not only for attributes but also for arbitrary ele-
ments or even composite objects (attribute + element)
in a portion of the document or the whole document.

DTD: No XML Schema: Yes XDR: Partial
SOX: No Schematron: Yes DSD: No

This feature can be easily expressed in XML Schema

using the same construct huniquei. For instance, the
following schema ensures there exists a unique phone
element under addr sub-elements of the person ele-
ment.

<unique> <selector>person/addr</selector>

<field>phone</field> </unique>

In XDR, elements support the ID attribute type as if
they are attributes albeit this is not implemented yet
in Internet Explorer 5.

<ElementType name='phone' dt:type='ID'/>

However, XDR cannot support uniqueness of compos-
ite objects. In Schematron, the same constraint can
be written as follows:

<rule context='person/addr'>

<assert test='count(phone) = 1'>

phone is not unique.</assert>

</rule>

3. Key for attribute: In databases, being a key re-
quires being unique as well as not being null. A similar
concept is de�ned in XML Schema.

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: Yes DSD: No

Using almost identical syntax as huniquei, a con-
struct hkeyi can specify an attribute as a key in XML

Schema. In Schematron, this feature can be simulated
as follows:

<rule context='person'>

<assert test='@ssn and count(@ssn) = 1'>

Is ssn unique?</assert>

<assert test='string-length(@ssn) > 0'>

Is ssn not empty?</assert>

</rule>

4. Key for non-attribute: XML Schema allows speci-
�cation of arbitrary elements or composite objects as
key.

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: Yes DSD: No

For instance, the following schema in XML Schema

de�nes the combination of an employee's department
code (element) and employee's name (attribute) as a
key.

<key name='ekey'>

<selector>employee</selector>

<field>dept/code</field><field>@name</field>

</key>

Schematron supports this feature similarly using pat-
terns.

5. Foreign key for attribute: Foreign key states if 1)
who is a referencing key and 2) who is being referenced
by the referencing key.

DTD: Partial XML Schema: Yes XDR: Partial
SOX: Partial Schematron: Yes DSD: Yes

Like ID type, DTD, XDR, SOX and DSD use IDREF

type for a referencing attribute. XML Schema uses
hkeyrefi. In addition to this, XML Schema and
DSD support a method to specify whom the foreign
key actually points to using constructs hreferi and
hPointsToi, respectively. Furthermore, DSD even al-
lows association of arbitrary boolean expressions with
the hPointsToi construct. Using this, for instance, one
can specify \an attribute A points to either attribute
B in an element E1 or C in element E2" in DSD. In
Schematron, this feature can be expressed using pat-
terns. For instance, the following schema states that
dno attribute of employee element should reference
the unique identi�er of dept element.

<rule context = 'employee[@dno]'>

<assert test='(name(id(@dno)) = 'dept')'>

Error occurred.</assert>

</rule>

6. Foreign key for non-attribute:

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: No DSD: Yes

Similar to specifying uniqueness for non-attributes,
XML Schema can specify foreign keys for arbitrary el-
ements or composite objects using the same hkeyrefi
construct.

<keyref refer='ekey'>

<selector>project</selector>

<field>emp-dept</field><field>@ename</field>

</keyref>

Similarly, the following DSD example illustrates that
an attribute book-ref is referencing an element book.

<AttributeDecl ID='book-ref' IDType='IDRef'>

<PointsTo>

<Context><Element Name='book'/></Centext>

</PointsTo>

</AttributeDecl>

2.7 Miscellaneous Features

1. Dynamic constraint: In Schematron, one can se-
lectively turn on and o� the constraints using hphasei
construct so that only part of the schema constraints
can be dynamically evaluated at any given time.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: Yes DSD: No

2. Version: Sometimes it is desirable to allow sev-
eral di�erent attribute or element de�nitions with the
same name. That is, several versions of an attribute
or element coexist.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: No DSD: Yes

XML Schema has a construct hversioni for schema def-
inition, but the current speci�cation does not de�ne
any further semantics for that; it is simply provided as
a convenience. DSD utilizes both \Name" as well as
\ID" attributes for element de�nition so that the at-
tributes with same names are legal as long as their IDs
are di�erent. Furthermore, by using the hRenewIDi
and hCurrIDRefi, any de�nition can be renewed, mak-
ing a new version of the de�nition. For instance,
the following schema illustrates the rede�nition of the
DSD constraint book-constraints:

<ConstraintDef ID='book-constraints'/>

<ConstraintDef RenewID='book-constraints'>

<Constraint CurrIDRef='book-constraints'/>

... modification ...

</ConstraintDef>

3. Documentation: At minimum, all languages sup-
port commenting on schema fragments using a con-
struct <-- comment -->. However, here we consider
documentation features beyond commenting such as:
1) textual description to explain a schema fragment
for human readers, 2) embedded documentation for
application programs, or 3) error or hint messages to
aid schema validation and debugging.

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: Yes DSD: Yes

XML Schema provides hdocumentationi and happinfoi
elements to support description for both human read-
ers as well as application programs. SOX provides

the hintroi element to provide an introduction to the
schema as a whole and hexplaini element to provide
a hook for including documentation within a schema
fragment. However, there is no support for auto-
matic debugging message or application programs.
In Schematron, by using the assertion semantics pro-
vided by constructs hasserti and hreporti, detailed
documentation for validating XML structures can be
provided. DSD supports three keywords: hLabeli,
hBriefDoci and hDoci. Using these, it is straightfor-
ward to implement, for instance, a debugging system.

4. Embedded HTML: Due to HTML's popularity, it is
often convenient to be able to embed HTML fragments
inside XML documents.

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: Partial DSD: Yes

Using hanyi element, XML Schema allows speci�cation
that any well-formed XML is permissible in a type's
content model. Hence, well-formed HTML code can
be easily embedded in XML document. SOX provides
similar feature using hexplaini element. Schematron

allows a few HTML tags (e.g., <p>,<emph>), but not
general ones. In DSD, one can use the documentation
facility to embed HTML.

5. Self-describability: The following languages pro-
vide a meta schema (i.e., representing the schema
speci�cation using the schema itself being de�ned).
The meta schema is useful in bootstrapping the im-
plementation of the language.

DTD: No XML Schema: Partial XDR: No
SOX: No Schematron: Partial DSD: Yes

While XML Schema and Schematron provide meta
schemas that capture only the syntactic requirements,
DSD provides a meta schema that captures both the
syntactic and semantic requirements.

3 Conclusion

 pattern-based grammar-based
 constraints-oriented structure-oriented

definition
 oriented

 usage
 oriented

Schematron

DSD

DTD

SOXXML Schema

XDR

Figure 1: XML schema languages classi�cation.

DTD

XDRSOX
w.r.t. DTD it has:
more structure,

more content model,
more datatyping

w.r.t. XDR it has:
inheritance,

more datatyping,
modularization

has basic support
for structure

DSDXML Schema
w.r.t. SOX it has:

constraint,
more structure,

documentation, version

w.r.t. SOX it has:
more structure,

datatyping, inheritance,
uniqueness and keyness

Schematron
w.r.t. SOX it has:

constraint,
uniqueness and keyness,

documentation

Class 1

Class 2

Class 3

Figure 2: Classi�cation of the expressive power of the six languages.

Our comparative review of the features is summarized
in Table 1.

From an \ease of use" point of view, DTD is arguably
the easiest schema language to learn despite its use
of proprietary syntax. Since the new additions to
XDR and SOX are relatively manageable, we think
the migration curve from DTD to these languages
is not steep. Although the language speci�cation of
Schematron is very simple, it exhibits much power.
However, this requires users to learn yet another lan-
guage XPath. Due to the extensive set of features
supported by XML Schema and DSD, we expect them
to be more di�cult to learn than others. Since DSD
uses explicit operators for regular expressions (e.g.,
hRepeati, hOneOfi), DSD schema tends to be more
verbose than XML Schema or Schematron schema.

From a \language" point of view, the six reviewed
XML schema languages can be roughly divided into
two camps based on factors such as grammar-based
vs. pattern-based, de�nition-oriented vs. validation-
oriented, structure-oriented vs. constraints-oriented,
etc. The classi�cation is summarized in Figure 1.
Based on our study, DTD, XML Schema, XDR and
SOX belong to the grammar-based language group
while Schematron belongs to the pattern-based lan-
guage group. DSD stands in-between, supporting
both features together. The grammar-based language
group especially has an advantage in XML query-
ing since knowing the structure and de�nition of the
schema helps users write more optimized queries and
detect errors in the queries more easily. On the other
hand, the pattern-based language group is naturally

superior with respect to the expressiveness of con-
straints in the application.

From a \database" point of view, no single language
su�ces the needs completely. The SQL DDL allows
speci�cation of not only a set of relations and at-
tributes, but also information about the domain of
values associated with each attribute, integrity con-
straints, indices for each relation, security, etc [20].
While XML Schema ful�lls the support for a variety
of built-in domain types, it could not express, for
instance, an arbitrary SQL CHECK or ASSERT clause.
Furthermore, although Schematron or DSD can ex-
press such integrity constraints, they have no support
of physical indices speci�cation for boosting perfor-
mance. Since a substantial amount of web documents
are generated from underlying databases by the user's
request, it is important to be able to handle such data-
centric features as SQL DDL do. We feel this is one
of the areas where database researchers can contribute
more.

From an \expressive power" point of view, the six
languages can be organized into the following three
classes as depicted in Figure 2.

� Class 1: DTD has the weakest expressive power.
Its support of schema structure is minimal and
it severely lacks the support for schema datatype
and constraint.

� Class 2: XDR and SOX belongs to the mid-
dle tier. Their support for schema datatype is
not enough (e.g., lack of explicit null and user-
de�ned type) although schema structure can be

supported rather su�ciently. Like DTD, however,
they mostly fail to support constraint speci�ca-
tion to express the semantics of the schema.

� Class 3: XML Schema, Schematron and DSD

have the strongest expressive power. Whereas
XML Schema supports features for schema
datatype and structure fully, Schematron pro-
vides a very
exible pattern language that can
describe the detailed semantics of the schema.
DSD tries to support common features supported
by XML Schema (e.g, structure) and Schematron

(e.g., constraint) along with some additional fea-
tures.

One should keep in mind, however, that the philoso-
phies by which each language has been designed are
quite di�erent; some try to de�ne more semantics
while others try to be more minimalistic. Therefore,
the languages in a higher class should not be regarded
as superior to the ones in a lower class.

In our study, we have found that the support of
constraints in the schema language (e.g., Schema-

tron, DSD) is a very attractive feature. However,
at the same time, ignoring the schema de�nition as-
pect completely like Schematron raises some concern
as a general purpose schema language. Although XML

Schema identi�es many commonly recurring schema
constraints and incorporates them into the language
speci�cation, we still feel XML Schema is too rigid in
that sense. It would be interesting to see if the sup-
port of constraints will be added to XML Schema in
the future.

Acknowledgment

The authors wish to thank Rick Jelli�e (ASCC) for an-
swering questions regarding Schematron and Michael
I. Schwartzbach (BRICS) for his helpful comments on
DSD during the writing of this paper.

References

[1] A. Bonifati, S. Ceri, \Comparative Analysis of Five
XML Query Languages", ACM SIGMOD Record ,
29(1), 2000.

[2] R. Bourret, J. Cowan, I. Macherius, S. St. Lau-
rent (ed.), \Document De�nition Markup Language
(DDML) Speci�cation, Version 1.0", January 1999.
(http://www.w3.org/TR/NOTE-ddml)

[3] T. Bray, C. Frankston, A. Malhotra (ed.), \Doc-
ument Content Description for XML", July 1998.
(http://www.w3.org/TR/NOTE-dcd)

[4] P. V. Biron, A. Malhotra (ed.) \XML Schema
Part 2: Datatypes", W3C , April 2000.
(http://www.w3.org/TR/xmlschema-2)

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen (ed.), \Ex-
tensible Markup Language (XML) 1.0", W3C , Febru-
ary 1998. (http://www.w3.org/TR/REC-xml)

[6] J. Clark (ed.) \XML Transformations
(XSLT) Version 1.0", W3C , November 1999.
(http://www.w3.org/TR/xslt)

[7] J. Clark, S. DeRose (ed.) \XML Path Lan-
guage (XPath) Version 1.0", W3C , November 1999.
(http://www.w3.org/TR/xpath)

[8] A. Davidson, M. Fuchs, M. Hedin, et al., \Schema
for Object-Oriented XML 2.0", W3C , July 1999.
(http://www.w3.org/TR/NOTE-SOX)

[9] C. Frankston, H. S. Thompson, \XML-Data
Reduced", Internet Document , July 1998.
(http://www.ltg.ed.ac.uk/�ht/XMLData-Reduced.htm)

[10] R. Jelli�e, \Schematron", In-

ternet Document , May 2000.
(http://www.ascc.net/xml/resource/schematron/)

[11] N. Klarlund, A. Moller, M. I. Schwatzbach, \Docu-
ment Structure Description 1.0", Internet Document ,
1999. (http://www.brics.dk/DSD/)

[12] N. Klarlund, A. Moller, M. I. Schwatzbach, \DSD: A
Schema Language for XML", Proc. 3rd ACM Work-

shop on Formal Methods in Software Practice, 2000.

[13] S. St. Laurent, \Describing Your Data: DTDs
and XML Schemas", XML.com, December 1999.
(http://www.xml.com/pub/1999/12/dtd/)

[14] A. Layman, E. Jung, et al., \XML-Data", W3C , Jan-
uary 1998. (http://www.w3.org/TR/1998/NOTE-XML-

data)

[15] M. Makoto, \RELAX (REgular LAnguage descrip-
tion for XML), Internet Document , April 2000.
(http://www.xml.gr.jp/relax/)

[16] Microsoft, \XML Schema Developer's
Guide", Internet Document , May 2000.
(http://msdn.microsoft.com/xml/XMLGuide/schema-

overview.asp)

[17] N. Miloslav, \Schematron Tuto-
rial", Internet Document , May 2000.
(http://www.zvon.org/HTMLonly/SchematronTutorial/

General/contents.html)

[18] D. Raggett, \Assertion Gram-
mars", Internet Document , May 1999.
(http://www.w3.org/People/Raggett/dtdgen/Docs/)

[19] A. Sahuguet \Everything You Ever Wanted to Know
About DTDs, But Were Afraid to Ask", Proc. 3rd Int'l
Workshop on the Web and Databases (WebDB), Dal-
las, TX, 2000

[20] A. Silberschatz, H. F. Korth, S. Sudarshan,
\Database System Concepts (3rd Edition)", McGraw-

Hill Co., 1997.

[21] H. S. Thompson, D. Beech, M. Maloney, N. Mendel-
sohn (ed.) \XML Schema Part 1: Structures", W3C ,
April 2000. (http://www.w3.org/TR/xmlschema-1)

Features DTD 1.0 XML Schema 1.0 XDR 1.0 SOX 2.0 Schematron 1.4 DSD 1.0

Schema

syntax in XML No Yes Yes Yes Yes Yes
namespace No Yes Yes Yes Yes No

include No Yes No Yes No Yes
import No Yes No Yes No No

Datatype

built-in type 10 37 33 17 0 0
user-de�ned type No Yes No Yes No Yes
domain constraint No Yes No Partial Yes Yes

explicit null No Yes No No No No

Attribute

default value Yes Yes Yes Yes No Yes
choice No No No No Yes Yes

optional vs. required Yes Yes Yes Yes Yes Yes
domain constraint Partial Yes Partial Partial Yes Yes

conditional de�nition No No No No Yes Yes

Element

default value No Partial No No No Yes
content model Yes Yes Yes Partial Yes Yes

ordered sequence Yes Yes Yes Yes Yes Yes
unordered sequence No Yes Yes No Yes Yes

choice Yes Yes Yes Yes Yes Yes
mim & max occurrence Partial Yes Yes Yes Yes Partial

open model No No Yes No Yes No
conditional de�nition No No No No Yes Yes

Inheritance

simple type by extension No No No No No No
simple type by restriction No Yes No Yes No No
complex type by extension No Yes No Yes No No
complex type by restriction No Yes No No No No

Being unique or key

uniqueness for attribute Yes Yes Yes Yes Yes Yes
uniqueness for non-attribute No Yes Partial No Yes No

key for attribute No Yes No No Yes No
key for non-attribute No Yes No No Yes No

foreign key for attribute Partial Yes Partial Partial Yes Yes
foreign key for non-attribute No Yes No No No Yes

Miscellaneous

dynamic constraint No No No No Yes No
version No No No No No Yes

documentation No Yes No Yes Yes Yes
embedded HTML No Yes No Yes Partial Yes
self-describability No Partial No No Partial Yes

Table 1: Summary of the feature comparisons.

