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1 Introduction

We have implemented a compressor (XMill) and de-

compressor (XDemill) for XML data, to be used in

data exchange and archiving, which can be download-

ed from http://www.research.att.com/sw/tools/xmill.

XMill compresses about twice as good as gzip, at

about the same speed. It does not need a DTD in

order to compress, and preserves the input XML �le

faithfully, including element order, attributes order,

PI's, comments, the DTD, etc. A novelty in XMill is

that it allows users to combine existing compressors

in order to compress heterogeneous XML data: by

default it uses zlib, a library function implement-

ing gzip's functionality, and includes some standard

compression techniques for simple data types. Fur-

ther, XMill is extensible with user-de�ned compres-

sors for complex data types, such as DNA sequences

or images. This paper describes XMill's extensible

architecture; it also summarizes some other aspects

of XMill from [3], such as container expressions and

an experimental evaluation.

There are three principles in XMill:

Separate structure from data The structure

consists of XML tags and attributes; it forms a

tree. The data consists of a sequence of items

(strings) representing element text contents and

attribute values. The structure and the data are

compressed separately.

Group data items with related meaning Data

items are grouped into containers , and each con-

tainer is compressed separately. By exploiting

similarities between the values in a container,

the compression improves substantially. By

default, XMill groups data items based on

the element type, but users can override that

through container expressions.

Apply semantic compressors to containers

Some data items are text, others are numbers,

�This work was done while the author was visiting AT&T

Labs.

others are dates, etc. XMill applies di�erent

specialized compressors (semantic compressors)

to di�erent containers.

While experimenting with XMill we made an inter-

esting discovery. A lot of data is available today in

ASCII �les, in various application speci�c data for-

mat: Web logs, IP traÆc logs, biological data, linguis-

tic data, etc. These data instances are good candi-

dates to be migrated to XML, in order to gain exibil-

ity and to bene�t from the large number of available

XML tools. But the size of the XML �le is larger (we

observed increases from 30% to 200%), and remains

still larger when we compare the gzip-ed �les. This is

a known fact, and a common objection to migrating

these formats to XML. We discovered however that

XMill shrinks the XML �le to less than gzip reduces

the original �le (up to half the size in some cases).

Thus, XMill o�ers an incentive to migrate data from

application speci�c formats to XML.

The rest of the paper is organized as follows: Sec. 2

describes an example of migrating data to XML,

Sec. 3 describes XMill's architecture, showing how

the structure is stored, how the data items are sep-

arated, describing the semantic compressors. Sec. 4

describes how XMill can be extended by users with

new semantic compressors. Sec. 5 is a brief overview

of several experiments on real data sets.

2 Migrating Data to XML: An

Example

We will illustrate with Web server log data, which we

will use as a running example. Virtually every Web

server logs its traÆc, for security purposes, and this

data can be (and often is) analyzed. The log �le is

an ASCII �le in which each line represents an HTTP

request, e.g.1:

202.239.238.16|GET / HTTP/1.0|text/html|200|

1997/10/01-00:00:02|-|4478|-|-|

http://www.so-net.jp/|Mozilla/3.0 [ja]

1This is one line in the log �le.
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Di�erent formats are currently in use: in our ex-

ample we use a variation on Apache's Custom Log

Format
2. Each line is a record with eleven variable-

length �elds delimited by |: host, request line, con-

tent type, etc. Missing values are indicated by -.

Di�erent web servers however can be con�gured to

log di�erent sets of �elds, or in a di�erent format.

This, of course, makes applications processing Web

log data brittle and non-portable.

The same data can be XML-ized, e.g. like that:

<apache:entry>

<apache:host> 202.239.238.16 </host>

<apache:requestLine>GET / HTTP/1.0</apache:requestLine>

<apache:contentType> text/html </apache:contentType>

<apache:statusCode> 200 </apache:statusCode>

<apache:date> 1997/10/01-00:00:02 </apache:date>

<apache:byteCount> 4478 </apache:byteCount>

<apache:referer>http://www.so-net.jp/</apache:referer>

<apache:userAgent> Mozilla/3.0 [ja] </apache:userAgent>

</apache:entry>

The data is now self-descriptive, and missing values

are simply dropped (only nine �elds are present).

Fields can be added or removed at will, and appli-

cations consuming such data are more robust. The

size of the log, however, increases: we observed a

200% increase from the ASCII �le to the XML �le

and a 40% increase from the gzip-ed ASCII �le to

the gzip-ed XML �le. This is an argument against

migrating Web log data into an XML format. With

XMill however, one can compress the XML �le to

about half the size of the gzip-ed ASCII �le (Sec. 5).

3 The Architecture of XMill

XMill compresses XML data by applying the three

principles in Sec. 1. Its architecture is shown in

Fig. 1. The XML �le is parsed by an SAX3 pars-

er that sends tokens to the path processor, the main

module in XMill. The purpose of the path proces-

sor is to separate the structure from the data, and

to further separate the data items according to their

semantics (Principles I and II).

To illustrate with our example, the structure con-

sists of the XML tags only (details in Sec. 3.1), while

the data items are the text inside the XML tags: all

host values (203.237.165.15, 203.172.22.2, . . . ), all re-

questLine values, etc. The structure will be stored

in one container, while the data items are stored in

separate data containers, one for each element type.

2http://www.apache.org/docs/mod/mod log config.html
3SAX stands for Simple API for XML,

http://www.megginson.com/SAX/.

Next, the structure container and all data contain-

ers are compressed with gzip4 before being sent to

disk. In addition, each data item may be compressed

with a semantic compressor (discussed in Sec. 3.3),

before being stored in its container (Principle III).

These semantic compressors are speci�ed by the user

on the command line: by default, no semantic com-

pressor is applied (the container will be compressed

with gzip anyway). For example, the user may know

that most values of the host element are IP addresses,

and instruct XMill to compress them as four unsigned

bytes.

In XML, elements may be nested to arbitrary

depth. By default, XMill groups data items based

on their innermost element type. Users however can

override this, by providing container expressions on

the command line (Sec. 3.2). The path processor uses

these expressions to determine in which container to

store each data item. Path expressions also determine

which semantic compressor to apply (if any).

The amount of main memory holding all containers

is �xed to 8MB.5 After this limit is exceeded by stor-

ing the next data item, the containers are gzip-ed,

sent to disk, then the compression resumes. In e�ect,

this partitions the input XML �le into blocks which

are compressed independently.

The decompressor, XDemill, is similar, but pro-

ceeds in reverse. It reads one block at a time in main

memory, decompresses every container, then merges

the XML tags with the data values to produce the

XML output.

3.1 Separating the Structure

The structure is de�ned to be the XML �le with all

text values and attribute values removed, and re-

placed with their container number. Start-tags are

dictionary-encoded, i.e. assigned an integer value,

while all end-tags are replaced by the same, unique

token. For illustration purposes, we denote start-tags

with T1, T2, . . . , the unique end-tag with /, and con-

tainer numbers with C1, C2, . . . . For our running

example the structure of the �rst entry is:

T1 T2 C1 / T3 C2 / T4 C3 / T5 C4 / T6 C5 / T8 C7 /

T11 C10 / T12 C11 / /

Here T1= apache:entry, T2= apache:host, and so on,

while / represents any end tag. Internally, each token

is encoded as an integer: tags are positive, container

numbers are negative, and \ is 0. Numbers between

4In fact with the zlib library function, but we will refer to

it as gzip throughout the paper.
5The limit is adjustable by the user. The e�ect of varying

window sizes on compression rate is studied in [3].
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gzip

Sem Compressor 2

CB ED A5 0F /images/logo.gif

/dist/test.zipCB AC 16 02

gzip

Sem Compressor k

Mozilla/4.0 [en] ...

Sem Compressor 1
Main memory

T1 T2 C1 / T3 C2 / ...

gzip

Structure Container Data Container 1 Data Container 2 Data Container k

...

...

SAX-Parser

Path Processor

<apache:entry>
   <apache:host>203.237.165.15</apache:host>
   <apache:requestline>GET /images/logo.gif
   ...
   <apache:useragent>Mozilla/4.0...
</apache:entry>
<apache:entry>
   <apache:host>203.172.22.2</apache:host>

Input file: XML

   ...
   <apache:requestline>GET /dist/test.zip

-p//apache:host=>IP

-p//apache:requestline=>set("GET " t)

-p//#

Command line: Container Expressions

gzip

...

Output file: compressed XML

Figure 1: Architecture of the Compressor

-64, 63 take one byte, others take two or four bytes:

the string above takes 26 bytes.

By default white spaces are ignored, and the de-

compressor will produce some standard formatting.

The user can instruct XMill to treat spaces as nor-

mal text, so that the decompressor can reconstruct

an identical XML output. The size of the compressed

�le typically increases only slightly when white spaces

are preserved: around 4% in our running example. In

the rest of the paper we will assume that white spaces

are ignored.

Regular XML data tends to repeat items with sim-

ilar structure. gzip, which is based on the Ziv-

Lempel algorithm LZ77[5], compresses such repeated

sequences in the structure container extremely well.

The compressed structure usually amounts to 1%-3%

of the compressed �le.

3.2 Grouping Data Items

We describe now how data items are mapped to con-

tainers, before being compressed. By default XMill

creates one container for every tag (element type) in

the XML �le, and stores each data item according to

its element type. The user can override this default

and describe a di�erent mapping of data items to

containers by specifying container expressions in the

command line: this may result in better compression.

For example consider an XML �le about products

whose produce description (subelement <descr>) is

either in English or German, depending whether the

product is under an <usa> element or a <germany>

element. One improves compression by mapping the

descriptions in two distinct containers. The com-

mand line for that contains two container expressions:

xmill -p //usa//descr -p //germany//descr file.xml

Container expressions are based on XPath [1]:

//usa//descr denotes any <descr> element con-

tained in some <usa> element. XMill creates two dis-

tinguished containers corresponding to the two com-

mand line expressions, and stores there each data

item matching that expression. All other data items

are stored according to their element tag.6

The container expressions only need to be speci�ed

to the compressor, not to the decompressor.

Overriding the default grouping of data items usu-

ally results in only modest improvements in the

compression ratio. Much better improvements are

achieved with semantic compressors, described next.

3.3 Semantic Compressors

XML �les encoding data, as opposed to structured

documents, often contain strings representing certain

simple data types: e.g. IP addresses, integers, ennu-

meration values (like US states). For these, simple

semantic compressors can be applied in XMill, and

results in signi�cant improvements in compression.

6This is the default and described by container expression

//#. Each substitution of # represents a di�erent container.

A complete description of container expressions is in [3].
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Semantic compressors are speci�ed on the com-

mand line with the container expressions. For our

Web log example in Sec. 2, the command line:

xmill -p //apache:code=>u file.xml

says that data items under <apache:code> are to be

stored as unsigned integers (u is the name of the un-

signed integer compressor): only one byte is used for

numbers less than 128 and two bytes or four bytes for

larger numbers, and all are stored in a separate con-

tainer. If some <apache:code> data item does not

parse as an unsigned integer, then it will be stored in

the default text container for this tag. Thus, no XML

�le is ever rejected, but the user's hint is only useful

if many <apache:code> values are unsigned integers.

XMill prede�nes a few simple semantic compressors,

such as: integer encoder (name i), dictionary encoder

(e - for enumeration), run-length (rl) and delta (di)

encoder. New ones can be de�ned by users, as we

describe shortly.

Some XML elements contain structured data

types. For example <apache:host> contains four

dot-separated unsigned integers. XMill provides

compressor combinators to handle such data values.

The sequence combinator seq(...) divides the string

into substrings and compresses them separately. For

example, seq(u8 "." u8 "." u8 "." u8) compresses an

IP address as four integers.7 The alternate combina-

tor or(s1 s2 . . . ) tries each of the compressors s1, s2,

..., until one of them accepts the string. Finally, the

repetition combinator rep(d s) compresses substrings

separated by delimiter string d using compressor s.

4 Extending XMill

Users can specify their own, application-speci�c com-

pressors (and compressor combinators!) in XMill

through a special interface called SCAPI (Seman-

tic Compressor API). Both XMill and XDemill need

to be recompiled, resulting in an extended compres-

sor/decompressor pair. This is very useful in appli-

cations where complex domain-speci�c data, such as

DNA sequences [2], needs to be exchanged between

two partners. Data compressed with an extended

compressor can only be decompressed by the corre-

sponding decompressor: this is a limitation, and rais-

es the interesting question of code migration, but it

goes beyond the scope of our work.

SCAPI Fig. 2 shows the (simpli�ed) core classes

of SCAPI. To de�ne a new (de)compressor, the user

must extend the classes and overload their methods.

7u8 is the prede�ned compressor for integers in the byte

range (0 � i < 256).

A UserCompressor-object compresses text items in

two phases:8 First, the text item is parsed (method

ParseString). If the text item has the wrong format

and cannot be compressed, then ParseString returns

0, otherwise 1. After successfully parsing the string,

the method CompressString is called to store the item.

A UserDecompressor-object decompresses a given

data from source containers and writes the decoded

string to the output stream.

An Example We illustrate with the delta compres-

sor (which is already de�ned in XMill under the name

di). This compressor stores a sequence of data items

like 9012; 9008; 9008; 9015; : : : as 9012;�4; 0;+7; : : ::

the idea is that the original numbers are large, but

di�erences are small, and can be stored in less space.

Such sequences occur e.g. in temperature measure-

ments. The delta compressor is:9

class DeltaCompr : public UserCompressor {

struct DeltaState {

int oldval; // The previous value

int curval; // The new (currently parsed) value

};

char ParseString(char *str,int len, void *state) {

return(ParseInt(str,len,

&(((DeltaState *)state)->curval)));

}

void CompressString(char *str, int len,

Container *container,void *state) {

container->StoreCompressedInt(

((DeltaState *)state)->curval

-((DeltaState *)state)->oldval);

((DeltaState *)state)->oldval=

((DeltaState *)state)->curval;

}

};

DeltaState represents the compressor state and keeps

the last integer value. To avoid parsing the

same string again, CompressString keeps the last

parsed value in DeltaState.curval. The function

ParseInt(str,len,&state->curval) parses string str with

length len as an integer and, if successful, stores the

result in state->curval and returns 1. Otherwise, it

returns 0. The method StoreCompressInt stores an

integer in the container, using the compressed inte-

ger format described in Sec. 3.1.

The decompressor class DeltaDecompr is simpler:

class DeltaDecompr : public UserDecompressor {

void Decompress(DecomprCont *container,

XMLOutput *output, void *state) {

((DeltaState *)state)->oldval

8The two-phase approach is necessary to ignore and \undo"

previous parses. This is important for combinators, such as

seq(u8 "." u8 "." u8 "." u8), when the last u8 rejects its input

string.
9We omit several details, such as the initialization of the

state with oldval=0
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class UserCompressor {

virtual char ParseString (char *str, int len, void *state)=0;

virtual void CompressString(char *str, int len, Container *container, void *state)=0;

};

class UserDecompressor {

virtual void Decompress(DecomprCont *container, XMLOutput *output, void *state)=0;

};

Figure 2: The SCAPI-interface (fragment) for implementing semantic compressors

+= container->GetCompressedInt();

output->OutputInt(((DeltaState *)state)->oldval);

}

};

The method GetCompressedInt reads the next (com-

pressed) integer from the container and adds its value

to the previous value oldval. Then the value is printed

using the method OutputInt(oldval).

Additional SCAPI details have been left out from

this presentation. For example an optimization

is that some compressors never reject their input

strings: in that case XMill does a single pass,

and avoids calling the method ParseString at all.

SCAPI de�nes a third class, called UserCompressor-

Factory, used in identifying and instantiating the

(de)compressors. Additional methods deal with the

initialization/termination process. The interface is

further complicated by the fact that some semantic

compressors store data into more than one contain-

er. Finally, SCAPI allows users to de�ne new com-

pressor combinators (like seq, or, rep), which have

parameters. All this adds complexity to the interface.

A complete description of SCAPI is in XMill's user

manual, http://www.research.att.com/sw/tools/xmill.

5 Experimental Evaluation

We give here a brief overview of XMill's performance,

emphasizing the improvements achieved by semantic

compressors. More experimental results are in [3].

The Weblog data was described in Sec. 2. SwissProt

is a biological database storing meta-data about DNA

sequences. Treebank [4] is a large collection of parsed

English sentences from the Wall Street Journal stored

in a Lisp like notation, which we converted to XML.

TPC-D(XML) is an XML representation of the TPC-

D benchmark database, using two levels of nesting10.

We deleted from the TPC-D data the Comment �eld,

which takes about 30% of the space, and consists of

randomly generated characters. DBLP is the popu-

lar database bibliography database11, and is stored in

a large collection of small XML �les, which we con-

10We tried other XML representations too, and observed no

signi�cant change in the experimental results.
11http://www.informatik.uni-trier.de/~ley/db/index.html

catenated into one large �le. Finally, Shakespeare is

a corpus of marked-up Shakespeare plays.

The original size of the �rst four data sources

(Weblog, SwissProt, Treebank, TPC-D) is between

35MB and 99MB, while the XML-ized versions have

a size between 54MB and 172MB. DBLP and Shake-

speare are stored directly in XML and have a size of

47MB and 7.3MB, respectively.

We ran the experiments on a Windows NT machine

with a 300MHz Pentium Processor and 128MB main

memory. The compression ratio is expressed as \bits

per bytes". For example, 2 bits/bytes means that the

compressed �le size is 25% of the uncompressed �le

size (lower is better).

Compression Ratio Fig. 3 shows the compres-

sion ratios for gzip and XMill under various set-

tings. For each data set, the four connected bars

represent gzip, and XMill run with three settings:

no grouping (XMill //), grouping based on parent

tag (XMill //#; this is the default setting), and user-

de�ned grouping with semantic compression (abbre-

viated XMill <u>). In XMill <u> we used the best

combination of container expressions we could �nd for

each particular data set. As expected, better settings

for XMill always produced better compression. For

the �rst four data sets (which had more data and less

text), XMill compressed under the default setting to

45%-60% the size of gzip: using semantic compres-

sors, XMill reduced the size to 35%-47% of gzip's.

For the more text-like data sets, XMill still performed

better than gzip, but less spectacularly. For the �rst

four data sets, the bar on the left represents the size

of the gzipped original �le (i.e. the height of the bar

is size(gzip(orig))=(8�size(XML))).

Compression Time v.s. Ratio There is a clas-

sical trade-o� in general-purpose compression: com-

pressors either achieve high compression ratios or are

fast. For example, compress is faster than gzip

but achieves worse compression rates, while bzip

(http://www.bzip2.org) achieves better compres-

sion rates but is excessively slow.

We compared XMill against a few standard com-

pressors (gzip; compress, and bzip) and the com-
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Figure 3: Compression Results

pression time and ratio results are shown in Fig. 4.

All compression rates and compression times are nor-

malized w.r.t. that of gzip.12

The diagram shows clearly that XMill o�ers the

best overall time/space tradeo� for XML data.

The blobs highlight the \data-like" XML data sets

(Weblog, SwissProt, Treebank, and TPC-D). Given

bzip's impressive performance, we tried to replace

gzip with bzip in our compressor XMill. As ex-

pected, the resulting compressor (called XBMill) com-

presses better (but slower) than XMill.
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6 Conclusions

XMill and XDemill are implemented in C++, and

have about 18,000 lines of code. They use zlib,

the library function variant of gzip. XMill pro-

duces consistently better compression ratios than

gzip, even under the default settings. We noticed

12In our con�guration, the absolute compression time of gzip

was between about 30s and 70s.

that many XML instances contain simple data types,

such as integers, IP addresses, enumeration values.

XMill provides a few simple semantic compressors for

such data types that improve the compression ratio

signi�cantly. For XML application containing more

complex data types, XMill can be extended with new

user de�ned compressors. We believe this to be a

powerful feature.
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