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Abstract
In the last few years, numerous proposals for modelling and
querying Multidimensional Databases (MDDB) are proposed. A
rigorous classification of the different types of hierarchies is still
an open problem. In this paper we propose and discuss some
different types of hierarchies within a single dimension of a cube.
These hierarchies divide in different levels of aggregation a single
dimension. Depending on them, we discuss the characterization of
some OLAP operators that refer to hierarchies in order to
maintain the data cube consistency. Moreover, we propose a set
of operators for changing the hierarchy structure. The issues
discussed provide modelling flexibility during the scheme design
phase and correct data analysis.

1. Introduction

Recently, the business strategies have given a strong relevance to
new research areas, such as Data Warehousing and On-Line-
Analytical-Processing, OLAP [2]. The OLAP concept was
proposed for rendering very large, historical (statistical)
databases in multidimensional perspectives, and it is oriented to
decision making for business users. The connection between
analyzing business data and socio-economic data (generally
known as statistical data) is not obvious, but both of them deal
with multidimensional data sets, and both are concerned with
statistical summarizations over the dimensions of the data sets.
Similarities and differences between OLAP and Statistical
databases are presented in [13]. The concept of
multidimensionality (or n-dimensionality) of these datasets, and
in particular, of aggregate data [12], as well as the concepts of
dimension (often called category attribute, descriptive variable,
character, etc.) and of measure (often called summary attribute,
quantitative data, variable, etc.) have been already discussed [9,
12]. Recently, in literature, many authors proposed
multidimensional data models and query languages. Gray et al. in
[3] proposed the data cube operator as extension to SQL which
generalized the histogram, cross-tabulation, roll-up, drill-down,
and sub-total constructs found in most report writers.
In [7] the authors formalized a multidimensional data model for
OLAP, and developed an algebra query language called Grouping
Algebra. The relative multidimensional cube algebra is proposed
in order to facilitate the data derivation. Gyssens et al. in [4]
presented a tabular database model and discussed a tabular algebra
as a language for querying and restructuring tabular data. Lehner in
[5] discussed the design problem that arose when the OLAP

scenarios became very large and they proposed a nested
multidimensional data model useful during schema designing and
multidimensional data analysis phases.
In literature, multidimensional data are characterized by having
two different types of attributes:
(a) one or more measured data, each representing the result of

the application of an aggregation function on raw data. Their
numerical values are called measures;

(b) a set of dimensions, which provide a qualitative description
of the measured data and are also called metadata, i.e. data
about data.

Since most proposed models have such constraints as
"dimensions are linguistic categories corresponding to different
ways of looking at the information", then each dimension is a
simple concept hierarchy. A different treatment is proposed in
[1] where the authors proposed a data model that provides
support for multiple hierarchies along each dimension and for ad
hoc aggregates, as well as a few algebraic operators. In this paper,
we deal more about multiple hierarchies, and we introduce the
multiplicity of a hierarchy as a semantic variant of the simple one.
Sometimes, dimensions are organized in hierarchies in which
there are different aggregate levels [11]. Some design and
computation problems can arise when the mapping between
different aggregate levels of a hierarchy is not complete. We
distinguish this type of hierarchy from that of where the mapping
between dimension levels is complete, and then accordingly, we
introduce the concepts of the partial and total classification
hierarchies. An OLAP system concerns mostly simple data cube,
i. e., it is a simple structure to collect in a single "scheme" all the
multidimensional aggregate and non-aggregate data relative to a
defined event (e.g., Sales, and so on). The values in each cell of
this data cube are some "measures" of interest.
In this context, through some examples, we will discuss different
types of operations using the well known OLAP operators, and
we propose their specialization to solve some problems which
arise in particular situations.
The paper is structured as following: Section 2 gives an overview
on basic concepts. Section 3 discusses the different types of
hierarchies of a cube. Section 4 introduces the characterization of
some OLAP operators on hierarchies. Section 5 gives a set of
operators that refer to changing the hierarchy structure. Finally,
Section 6 concludes.



2. An overview on basic concepts

In literature, different sets of basic concepts and operators were
proposed. In this paper, we will refer to the multidimensional
data structure and to a set of minimal basic operators described
in the following.
A Cube is "a group of data cells arranged by the dimensions of
the data" [8]. It represents a logical view of multidimensional
data.
A dimension is "a structural attribute of a cube that is a list of
members, all of which are of a similar type in the user's
perception of the data" [8]. The set of the cube dimensions
represents the relative data multidimensionality.
A hierarchy is a set of variables which represent different levels
of aggregation of the same dimension and which are linked
between them by a mapping. A typical example of hierarchy is
City →  State →  Region →  Country.
A measure is a particular dimension of the cube [1], which
represents the extensional fashion of the phenomenon described
by the cube, and which is, in general, a numeric value. Assigning
a value to each dimension of a cube, the measure is obtained by a
mapping from this assignment. In Figure 1 these concepts are
graphically represented.

instance of the measure
stored into a cube cell

Title

Location

North                                 ...............              West

Maine            .....       Ohio              ........     California             .......          Arizona

Lewiston  ...Bangor  Cleveland  ...  Akron   San Francisc    Los Angeles     Phoenix Tucson

Dimension 1

Dimension 2

Dimension 3

Intensional
space

Region

State

City

 .....  .....  .....  .....

-> Location=City

Extensional
space

Figure 1. Example of a data cube with hierarchy.

In a multidimensional database different cubes are stored, each of
which is defined with different dimensions. The domains of these
dimensions consist of a set of values (instances). We define
primitive domain of a variable the set of all the possible values
that this variable can assume in the database. This means that
every variable of a hierarchy has its own domain whose values are
a subset of, or coincide with the values of its primitive domain.
The OLAP operators defined in literature [1, 2, 3, 8] and
considered in this paper are roll-up, drill-down, push, pull, slice,
dice, and select. We briefly describe them in the following.
The roll-up operator decreases the detail of the measure,
aggregating it along the dimension hierarchy [1]. It is equivalent
to the classification operator of the statistical database operators
[10]. "Roll-up involves computing all of the formula-based
relationships of data for one or more dimension".  Note that
because in this paper, we consider only data obtained from count
and sum function application, then this computation is a sum.

Example 2.1 Consider the hierarchy of Figure 1. The roll-up
operation allows to change level from City to State, recomputing
the values of the measure. o

We would point out that we consider a city as a municipality
area. It means that each state consists of a set of municipality
(form territorial, population, etc., point of view)-
The drill-down operator is a binary operator [1] which considers
the aggregate cube joined with the cube that has more detailed
information and increases the detail of the measure going to the
lower level of the dimension hierarchy.

Example 2.2 Consider the hierarchy of Figure 1. The drill-down
operation allows to pass from State to City, retrieving the values
of the measure which were previously stored in the same cube. 

o

The push operator is used to convert a dimension into the
relative measure in order to manipulate it or to consider it as new
measure. Combining with the Pull operator, it can exchange
measure and dimension and, then, allows to treat uniformly both
of them.

Example 2.3 Consider the cube of Figure 1. Suppose that the
phenomenon considered in it is "Cars sales" and that the measure
values represent the cars sold in USA by City, Vendor
(dimension 1), and Year (dimension 3). By this operation we can
push, for example, Vendor instances into the cells of the cube, so
that in them we will find a couple of values (in our case, for
example, we will find <Smith, 2,738>, ... , etc.). It is different
from the operator defined in [1]. In fact, we delete the dimension
1 (Vendor) of the cube, while in [1] it is maintained also as
dimension, that is, it is duplicated into the measure of the
cube.                        
                          
                          
o

The pull operator is the converse of the previous one. It creates a
new dimension converting the element, specified from it, which
is in the measure.

Example 2.4 Let us consider the database described in the
previous example. By this operator we can extract the element of
the measure specified in the operation (for example, "Cars sales")
transforming it in a dimension of the cube. The result is a new
cube where the dimension 1 becomes "Cars sales" and the
measure becomes "Vendor". o

The slice (or Destroy Dimension [1]) operator deletes one
dimension of the cube, so that the sub-cube derived from all the
remaining dimensions is the slice result that is specified. It is
equivalent to the summarization operator of the statistical
database operators [10].

Example 2.5 Let us consider the cube of Figure 1 with an
additional dimension "Model". This operation allows to cut one
specified dimension, recomputing all the values of the new
measure in each cell of the cube. For example, slice Model deletes
this dimension from the cube and recomputes the values of the
measure in the single cell of the resulted cube that becomes, in
this case, a bidimensional table. o



The dice (or Restriction [1]) operator restricts the dimension
value domain of the cube removing from this domain those values
of the dimension that are specified in the condition (predicate)
expressed in the operation. It is equivalent to the restriction
operator of the statistical database operators [10].

Example 2.6 Let us consider the cube of Figure 1 and suppose
that the Year domain is <1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998>. This operation allows to cut the part of the
domain instances of one dimension of this cube which are
specified in the operation. For example, dice Year = <1990,
1991, 1992 > carries out the removing of the above mentioned
instances from the domain of the dimension Year, restricting it to
the remaining values (1993, … ,1998). o

The select operator is the dual of the dice operator. It carries out
the restriction operation removing from this domain those values
of dimension that do not satisfy the condition (predicate)
expressed in the operation.

Example 2.7 Let us consider the Example 2.6. This operation
restricts the dimension value domain of the cube maintaining in
this domain those values of the dimension that are specified in
the condition expressed in the operation. For example, select Year
=<1990, 1991, 1992> carries out the selection of these values
into the domain, so that the new domain values consists of
exactly these values. o

3. Characterization of hierarchies

Hierarchy is fundamental to data warehouse and OLAP
environment. A hierarchy is an effective form of knowledge
representation for encoding prior domain knowledge relevant to
data cube. In a simple form, a hierarchy shows the relationships
between domains of values. Each operation on hierarchy can be
regarded as a mapping from one domain to a smaller domain.
In OLAP environment, hierarchies are used to conceptualize the
process of generalizing data as a transformation of values from
one domain to values of another domain by means of drill-
down/roll-up operators.
In this section, we discuss the hierarchies from two different
perspectives: mapping between domain values, i. e., leading to
consider total and partial classification hierarchies and hierarchy
structure. The later case, treats multiple and multiplicity of
hierarchies.

3.1. Classification hierarchies

Dimensions have often been associated with different
hierarchically organized levels. These levels correspond to
different granularities of viewing data. The name of each level is
expressed by the corresponding variable name. Generally, the
shift from a lower (more detailed) level to a higher (more
aggregate) level is carried out by a mapping. A mapping between
two variables can be complete or incomplete. In the first case the
hierarchy is called total classification hierarchy, and in the second
case it is called partial classification hierarchy. We give the
following definitions:

Definition 1 A mapping between two variables of a hierarchy
defines a containment function if each variable instance of a lower
level corresponds to only one variable instance of a higher level
and each variable instance of a higher level corresponds to at least
one variable instance of a lower level. In such case, this mapping
is called full mapping.

Definition 2 A total classification hierarchy on a given
dimension is a hierarchy in which between each adjacent couple
of variables there is a full mapping.

The containment function respects the summarizability
conditions (disjointness and completeness) of multidimensional
databases described in [6] and in [11]. As known in literature, a
hierarchy is intensionally represented by a partial ordered set.
Then, a total classification hierarchy is any subset that defines a
total order.

Example 3.1 Let us consider a nation-wide drink company that
owns chain stores located in all cities. Assume that all stores in
the chain sell the same beverages. Sales data are collected yearly,
i. e., at the end of each year, each member store reports the total
sales amount of each drink to the regional headquarters. Figure 2
shows part of the data reported in 1997 and 1998. o

The hierarchies along the dimensions Location, and Beverages are
represented below both in intensional level and extensional level.
As shown in Figure 3, for a domain value of a level on location
dimension all domain values of the lower level are defined, i. e., it
is a total classification hierarchy. This is completely in
accordance with the hypothesis made in Example 1, where in all
cities of the given country such a drink store is located.

 Sales
Class City Vendor Year 1997 1998
Alcoholic Los Angles Smith 10000 12000

New York Wong 20000 16000
Washington Mc Donald 23000 17000
Atlanta Laurent 50000 60000

… … .... … …
Dallas Backer 21000 32000
Detroit Clifford 90000 18000

Non Los Angles Smith 20900 14500
alcoholic New York Wong 12300 32009

Washington Mc Donald 87000 23890
Atlanta Laurent 23100 49000
.......... .......... ........ .......
Dallas Backer 56000 34500
Detroit Clifford 21000 30000

Figure 2.  Example of a data cube



Location

Region

State 

City

North                ...............                          West

Maine ..... Massachusetts   ........  California                                 Arizona      ............      Nevada

...          ...      Boston     ...    San Francisco  San Jose  San Diego ... Los Angeles       ...  ...  ...    ....

Bevarages 

Class                               Alcoholic                                      Non Alcoholic

Type               Beer   Spirits        Wine         Liquor      Milk      Bottle Water            Juice Tea Soft Drink Coffee

Country U.S.A.

All Drink 

Figure 3. The hierarchies along the dimensions Beverages, and
Location (at left) and the relative domain value (at right)

Definition 3  A partial classification hierarchy on a given
dimension is a hierarchy in which between at least one adjacent
couple of variables there is no full mapping.

Example 3.2  Consider the chain store example we gave in
Example 3.1. Suppose that the chain stores of the above
mentioned company in the state of California are located only in
some of cities of this state (see Figure 4).

Location

Region

State 

City

North                ...............                                 West 

Maine ..... Massachusetts   ........  California                             Arizona      ............      Nevada

...          ...      Boston     ...       San Francisco  San Jose  San Diego                   ...  ...  ...    .... 

Country U.S.A.

Figure 4. Domain values of the City level

Then, the domain value of City level along the Location dimension
is restricted with respect to that shown in Figure 3. Accordingly,
these cities are not listed in the table of Drink sales . 

o

These two types of hierarchies will influence the result of queries
for which the summarization operations will be needed. Details of
this fact are discussed in a further section.
Note that, in this paper, we consider only hierarchies in which no
overlapping exists among domain instances of each variable.

3.2. Multiplicity of a hierarchy and multiple
hierarchies

One of the more important problems regarding the hierarchies
refers to their definition. In this section we propose a set of
definitions in order to fix a reference point in their study.
First of all, we distinguish between multiplicity of a hierarchy
and multiple hierarchy.

Definition 4 Let H  and H 1  be two hierarchies. H 1  is a
multiplicity of H  if its level domains are the same as the H 
level domains and the variable name associated to each level
of H 1  is a specialization of the variable name associated to
the corresponding levels of H .

Example 3.3 Let us consider a location hierarchy defined as:
City →  Province →  Region. A possible multiplicity of this
hierarchy is City of residence →  Province of residence → 

Region of residence. o

Definition 5  Let H 1 , H 2 , ... , H n  be a set of hierarchies.
This set forms a multiple hierarchy if each of them has at
least one variable in common with another hierarchy of the
same set.

Example 3.4 Let us suppose that we have four hierarchies,
labelled (a), (b), (c), and (d), as illustrated in Figure 5. The
hierarchy labeled (d) is a multiple hierarchy, where the level
Province is the same for (a) and (b) and the level Region is the
same for (a) and (c). o

(a) (b) (c) (d) 

City

Province

Region

Country 

City

Province

Region

Country 

City

Province

Zone Zone

State State 

City

Country 

Region

Figure 5. Example of a multiple hierarchy

Definition 6 Let H  be a hierarchy. The hierarchy obtained
from deleting one or more non terminal variable or level of H 
is a derived hierarchy.

Example 3.5 From the multiple hierarchy (d) shown in Figure 4,
we obtain the following derived hierarchies: City → Province
→ Country, City → Region → Country, City →  Country, City
→  Zone, City →  Region → Country, City → Province
→ Country, and City → State → Country. o

Specifically, in the case of partial classification hierarchies, the
variable instances of derived hierarchies are the instances of
variables that are adjacent to the instances of deleted levels and
between which a connected path can be defined. For example, in
Figure 6-(b) are reported the variable instances of derived
hierarchies obtained from variable instances of the partial
classification hierarchy illustrated in Figure 6-(a) that satisfy the
above mentioned condition.

4. Characterization of OLAP operators on
hierarchies
Recently different authors proposed a set of OLAP operators,
which are defined on data cube and which produce as output a
new cube [1, 2, 9]. In this section, we discuss the operators
involved in manipulating dimensions with hierarchies in order to
introduce some important modifications and specializations.



hierarchies  variable instances 

K1

K2

K3

K1

K3

(a) 

(b) 

Figure 6. Example of path generation between levels

4.1. Case of the Roll-up operator

As mentioned above, this operator decreases the detail of the
measure, aggregating it along the dimension hierarchy. A problem
arises when a variable relative to a level of the hierarchy is not
complete (i.e., case of partial classification hierarchy).
In the following we consider what happens when this operator is
applied to a total classification hierarchy and, then, to a partial
classification hierarchy.

Example 4.1 Let us consider the data cube represented in Figure
2. In Figure 7, an its "multidimensional" view is illustrated. o

Vendors 

# of sales  
in 1997 in USA  

instance of the measure 
stored into a cube cell  Class

City

(Smith, Wong, Mc Donald, Laurent, Cliffords, Chen)Vendors 

Figure 7. Multidimensional view of Drink Sales data cube

Let us suppose to formulate a query defined as below:
"Select Vendors for which the total Sales is >10000 units in
each State of the West"

This query is solved in the following way:
Roll-up from City to Region, Select  Region = West, Drill-
down from Region to State, Push Vendors, Pull # of sales,
Dice # of sales "≤10000". o

Note that in some cells of the resulted cube (see Figure 8) null
values can appear. This demonstrates that some instances of
"Vendors" are not defined.
Let us suppose, now, that the classification hierarchy relative to
"City →  State →  Region" has, as domains the cities of
California, with only the instances "San Francisco, San Jose, San
Diego". This one is a subset of the primitive domain of City, in
which all the cities of California (San Francisco, San Jose, San
Diego, Los Angeles, etc.) are stored.

Vendors with total  
sales >10,000 units 
in each west state of 
the USA in 1997 

States of West         California, Arizona, Utah,  ....., Nevada

# of sales      101410  114820  118460  121270  152950  192760  22461   

States of West

# of sales

All 

Mc Donald 

drink 

12127 

California

Figure 8. The result of the query

In particular, when the operator Roll-up from City to Region is
applied, no information is stored about the non completeness of
the domain of City relative to California. This means that for
California the number of vendors for which the total Drinks sold
in 1990 is >10,000 units refers only to the cities of San
Francisco, San Jose, and San Diego and not to all the cities of
California. Then, since this information is not specified
anywhere, the answer for this state is wrong.
A solution to that is to save the information about the domain
values that cause the non-completenesses of the hierarchy. This
can be obtained in two different ways. The former consists of
adding a Note (the clause where <variable name> is-a subset of
the primitive domain) to the title of the cube. In the case of
Figure 8, the title becomes "Vendors with total Drinks sales
>10,000 units in each state of the West in 1997 in USA, where
city of California is-a subset of the primitive domain". The later
consists of adding the same Note to each variable of the hierarchy
whose level is higher with respect to the level of the variable
with the incomplete domain. In the same Figure 8, we have to
add the clause where city of California is-a subset of the primitive
domain to the variables State, Region, and Country.

4.2. Case of the Slice operator
As mentioned above, the slice operator reduces the
dimensionality (or cardinality) of a cube eliminating one
dimension through its multidimensional space. This fact is not
always true because, if we delete a dimension whose domain is a
subset of the primitive domain, we lose information and the
resulting cube of this operation contains incorrect data.
Before discussing this situation, we need to introduce the implicit
dimension definition.

Definition 7 We call implicit dimension any dimension of a
data cube which has only one instance in its definition
domain. This instance can be one value or multi-valued.

Example 4.2 Let us consider the cube of Figure 2, where the
primitive domain of the dimension Year assumes the values
<1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998>. This
means that they are all the possible values that this dimension can
assume in the database. Instead, the value domain of Year in the
considered cube is <97, 98>.
Let us suppose that the following query is carried out:



"Give me the drink sales in all Cities by Class and Vendor"
It is solved in the following way:
     Slice Year.

In this case if the slice operator deletes the dimension Year, the
result seems to refer to the whole primitive domain of Year. This
means that we lose the exact information on the real period to
which the result should refer. To overcome this mistake we
introduce a specialization of the Slice operator, called Partial Slice
(or P-Slice) and defined below. o

Definition 8 The P-Slice operator removes the dimension on
which it is applied transforming it in an implicit dimension.
The only value of the implicit dimension domain is the set
valued of all the values that formed the domain of the
removed dimension.

Similarly to the solution proposed for the Roll-up operator, the
same Note is added to the title of the cube.
According to this definition, the above query is now solved in the
following way:
     P-Slice Year.

The result is now a cube with the same dimensions of the primary
one, where the title becomes "Drink sales by Class, Vendor, and
Year where Year is a subset of the primitive domain".
For symmetric reasoning of terminology we use the term Total
Slice (or T-Slice) for the well known Slice operator
If, instead, the Year domain in the considered cube coincided with
its primitive domain, then the previous query would be solved in
the following way:
      T-Slice Year.

The cardinality of the resulting cube is now decreased of one
dimension, since, by removing Year no information is lost.

5. An enlargement of the operator set referring
to hierarchies

In this section we propose a set of operators able to change the
primary configuration of a hierarchy extending or reducing its
level number, adding a new multiplicity, and creating a multiple
hierarchy.  For formalizing them, let us consider l 1  and l 2  be two
adjacent levels of a given hierarchy defined as l 1 → l 2 . Let us
discuss them.

5.1 Insert level
The Insert level operator allows to add a new level to a hierarchy,
(giving the variable name, the domain instances, and the
relationships between this level and, respectively, the higher and
the lower adjacent levels in the hierarchy).  The insertion of a new
level denoted by l i  between the above mentioned levels is

represented through the symbol Insertlevel l 1 

l 2 l i ( I i , 1 , … , I i , n ; R i ) ,

where I i , 1 , … , I i , n  represents the inserted level domain instances

and

where the instances of levels l 2 , l i , l 1  are divided in
respectively, k , h , and n  subsets and p j , q v  represent a

generic set of l i , and l 1  levels instances where j = 1 , … , h  and
v = 1 , … , n .

Example 5.1 Let us consider the Location dimension shown in
Figure 2. Let us suppose to insert the variable County between
the variables City and State. We have to define its domain values,
as well as the mapping relationship between City and County, and
between County and State  (see Figure 9). This is obtained by the
following formula:
 Insertlevel City

State County ( Green , Orange , … ; R County )  where
R County = ( … , ( California ( Green ( San Francisco , … , Richmond ) , 

                  … , Orange ( Los Angels , … , Oxnard ) ),… ) 
o

Location

North                                 ...............                           West

Maine            .....           Ohio              ........       California             .......                                     Arizona

Lewiston ... Bangor  ..   Cleveland  ...  Akron  ... San Francisco..Richmond  Los Angeles..Oxnard    Phoenix..Tucson

Intensional
space

Region

State

City

 .....
 .....  .....  .....

Extensional space

County Green               Orange .....  ..... .....
........

Insert level

....

....

 .....
 ..... .....

Figure 9. Example of Insert level operator

5.2 Delete level
The Delete level operator redefines a hierarchy as a subset of the
existing one, deleting a variable with its relative domain. This
operation re-creates the mapping relationships between the two
levels (higher and the lower) adjacent to the deleted variable. The
deletion of a level l i  is denoted by Deletelevel l 1 

l 2 l i ( I i , 1 , … , I i , n ) 

where l 1  and l 2  are, respectively, the relative lower and higher
level in the given hierarchy. This is the converse operation of the
insert level operation. Note that, in this case the relationships
between level are defined automatically by the system.

5.3. Add multiplicity
The Add multiplicity operator duplicates a given hierarchy,
changing the name of the variables in order to specialize them, as
already discussed in section 3.2.  Let H  be a hierarchy. This
operator is represented through
 Addmultiplicity H ( additionalname )  where additionalname  is a
string to be added to each variable names of the hierarchy in
order to specialzing the last one.

Example 5.2 Let us consider the example 3.3.  The hierarchy
City of residence →  Province of residence →  Region of
residence is obtained by
 Addmultiplicity Location  ( of residence ) o

5.3. Add level
The Add level operator creates a new hierarchy starting from a
given hierarchy. It creates a new variable and its relative domain,
and defines the mapping relationship between this and the
variable of the starting hierarchy. These two hierarchies define, in
this way, a multiple hierarchy.  Let l n  be a level to be added to a
hierarchy defined as l 1 → l 2 → … → l n − 1 . The Add level operator
is represented through

))),,(,...                     
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gives as result a hierarchy l 1 → l 2 → … → l n − 1 → l n .

Example 5.3 An example of multiple hierarchy has been already
shown in Figure 5-(d). o

6. Conclusions

In this paper, after a brief overview of basic concepts relative to
the multidimensional data structures and to a set of OLAP
operators, which are object of the discussions that followed, a
characteriazation of hierarchy is proposed. We distinguished
between hierarchies in which the mapping between different
levels is full and hierarchies in which this condition is not
satisfied. Then, we defined the concepts of multiplicity of a
given hierarchy and of multiple hierarchies.
Based on the definitions and concepts proposed in this paper,
we discussed the characterization of the OLAP operators
involved in the hierarchy manipulation. In particular, depending
on the type of hierarchy, we studied the different behaviour of
the Roll-up and the drill-down operators in order to keep the
consistency of data that is the result of the queries. We also
characterize the slice operator, defining the implicit dimension
concept and specializing the operator in two different types: P-
slice and T-slice. Finally, we proposed an enlargement of the
operator set, specific for the hierarchy manipulation, which are
the Insert level, the Delete level, the Add multiplicity, and the
Add level operators. For each situation discussed, clarifying
examples are given.
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