
Incremental Maintenance of Recursive Views

Using Relational Calculus/SQL�

Guozhu Dongy

Department of Computer Science and Engineering

Wright State University

Dayton, Ohio 45435

Email: gdong@cs.wright.edu

Jianwen Suz

Department of Computer Science

University of California

Santa Barbara, CA 93106

Email: su@cs.ucsb.edu

Abstract

Views are a central component of both traditional

database systems and new applications such as data

warehouses. Very often the desired views (e.g. the

transitive closure) cannot be de�ned in the standard

language of the underlying database system. Fortu-

nately, it is often possible to incrementally maintain

these views using the standard language. For exam-

ple, transitive closure of acyclic graphs, and of undi-

rected graphs, can be maintained in relational cal-

culus after both single edge insertions and deletions.

Many such results have been published in the theoret-

ical database community. The purpose of this survey

is to make these useful results known to the wider

database research and development community.

There are many interesting issues involved in the

maintenance of recursive views. A maintenance al-

gorithm may be applicable to just one view, or to a

class of views speci�ed by a view de�nition language

such as Datalog. The maintenance algorithm can be

speci�ed in a maintenance language of di�erent ex-

pressiveness, such as the conjunctive queries, the re-

lational calculus or SQL. Ideally, this maintenance

language should be less expensive than the view def-

inition language. The maintenance algorithm may

allow updates of di�erent kinds, such as just single tu-

ple insertions, just single tuple deletions, special set-

based insertions and/or deletions, or combinations

thereof. The view maintenance algorithms may also

need to maintain auxiliary relations to help maintain

the views of interest. It is of interest to know the

minimal arity necessary for these auxiliary relations

�Database Principles Column.

Column editor: Leonid Libkin, Bell Laboratories, 600

Mountain Avenue, Murray Hill, NJ 08974. E-mail:

libkin@research.bell-labs.com.

y
Supported in part by a Research Challenge Award from

Ohio Board of Regents and Wright State University.

z
Supported in part by NSF grants IRI-9700370 and IIS-

9817432.

and whether the auxiliary relations are determinis-

tic. While many results are known about these issues

for several settings, many further challenging research

problems still remain to be solved.

1 Introduction

In many database applications there is a need to pose

queries which cannot be de�ned by relational calcu-

lus and even SQL. For example, the popular transi-

tive closure query is frequently needed and cannot be

de�ned in these languages [2, 27]. Fortunately, in a

real database system, one can try to overcome this

problem by storing the answer to the queries as ma-

terialized views and maintaining the views whenever

updates (e.g. the insertion or deletion of tuples) to

the former occur. This idea has been investigated

quite extensively under the name of an incremental

evaluation system, or IES.

For the simplest setting, an IES maintains a view

Q over a single base relation R. There are two main-

tenance algorithms, Q+ and Q�, where Q+ main-

tains Q after insertion to the base relation R and

Q� maintains Q after deletion from R. Through-

out this paper, we will use Rold to refer to the in-

stance of R in the database before an update, and

Rnew the instance of R after the update. For each

old instance Rold and each insertion update � that

the IES is designed to handle, Q(Rold [�) can be

derived from the old base relation, the old view con-

tents, and the update using the maintenance query

Q+: Q(Rold [�) = Q+(Rold; Q(Rold);�). The IES

handles deletions similarly.

When there are multiple views and/or multiple

base relations, there will be more maintenance al-

gorithms, one for each allowed update type and each

view-base relation combination.

If an IES maintains just the given views, it is called

a space-free IES. Sometimes, it is also necessary to

1

maintain auxiliary relations, which are maintained

similarly to the way the given views are maintained.

With the help of auxiliary relations, we can maintain

views that cannot be maintained otherwise. Further-

more, we will see later that the arity of the auxiliary

relations also makes a di�erence to what can be main-

tained.

The maintenance algorithms can be speci�ed in

di�erent maintenance languages, such as relational

calculus, SQL, nested relational algebra, Datalog, or

even a host programming language. The choice of a

maintenance language can be inuenced by the prac-

tical constraints imposed by real systems, and it can

also be inuenced by e�ciency issues, as some lan-

guages are more e�cient or more optimizable than

others. In the literature, FOIES refers to the type

of IES that uses the relational calculus (�rst-order)

language as the maintenance language. A closely

related formalism is dynamic �rst-order, DynFO, of

[30]. While DynFO is similar to FOIES in many as-

pects, there are some important di�erences between

the two, see [30, 10] for comparison. Also in the lit-

erature, SQLIES refers to the type of IES that uses

SQL1 as the maintenance language. We will also use

these names in this article.

Generally, an IES may be able to deal with dif-

ferent types of updates. Example types of updates

include single-tuple insertions, single-tuple deletions,

insertions/deletions of sets satisfying certain condi-

tions, or combinations of these.

Incremental evaluation is often seen as merely a

means to avoid expensive re-computation. However,

from what we know of the transitive closure query

(discussed in Sections 2 and 3), one can see that there

is much more to the idea of incremental evaluation

than just a simple view of avoiding re-computation.

In particular, we see incremental evaluation also as a

way to do things that could not be done otherwise.

Coming back to the transitive closure, it cannot be

expressed in relational databases using SQL without

incremental evaluation but can be expressed in rela-

tional databases using SQL in the setting of an incre-

mental evaluation system. In other words, avoidance

of the cost of re-computation is not even the issue

here, for the query is not even do-able in SQL with-

out incremental evaluation in the �rst place!

After the �rst study [13] on the idea of an IES

for maintaining a view de�ned by a more powerful

language using maintenance algorithms written in a

less powerful language, much is already known about

the theory and algorithms of IES [7, 14, 12, 9, 11, 5,

1
By which we mean an extension of relational calculus with

aggregation; that is, essentially select-from-where-groupby-

having clauses plus Boolean operations.

26, 30, 29, etc.]. The objective of this paper is to

provide a tutorial on IES and an overview of some

of the results on IES. We hope that this will speed

up the process of implementing these results in real

systems.

This survey is organized as follows. Section 2 dis-

cusses the transitive closure of acyclic graphs. Sec-

tion 3 considers the transitive closure of undirected

graphs. Section 4 is about regular chain Datalog

views. Section 5 is concerned with set-based updates.

Section 6 considers space complexity. Section 7 re-

views work on IES using SQL as the maintenance lan-

guage. Section 8 sketches some other related work,

including those using a host programming language

as the maintenance language, either from a database

perspective or from a more general algorithmic per-

spective. Section 9 o�ers some concluding remarks.

2 Transitive closure of acyclic

graphs

The FOIES for maintaining the transitive closure of

acyclic graphs [9, 8] is a simple illustration of the

power of the FOIES model. It uses the relational cal-

culus as the maintenance language, it handles both

tuple insertions and tuple deletions, and it does not

use auxiliary relations.

Let G represent the input graph (directed) and TC
the transitive closure of G. So a tuple (x; y) is in the

relation G if and only if there is a directed edge from

the node x to the node y in the input graph, and a

tuple (x; y) is in the relation TC if and only if there is

a directed path from the node x to the node y in the

input graph. An edge insertion is allowed only if this

insertion does not lead to cycles in the new graph.

Maintenance after insertions

Suppose an edge (a; b) is inserted. We maintain TC
as follows. Essentially, the new transitive closure is

obtained by adding to the old transitive closure the

following: (1) all new paths constructed by adding

the new edge (a; b) to the back of an existing path

ending at a, (2) all new paths constructed by adding

the new edge (a; b) to the front of an existing path

starting at b, (3) all new paths constructed by in-

serting the new edge (a; b) between an existing path

ending at a and an existing path starting at b, and
(4) the new edge itself. New paths added by rules

(1), (2), and (3) correspond to paths of type x ! a,
b! y, and x! y, respectively, shown in Figure 1(a).

This covers all new paths because only one occurrence

of the new edge is necessary in every new path (Fig-

2

x yba

new path new path
new path

old pathold path edge
new

(a) New paths after inserting (a; b)

x a bedgenew
yold pathold pathold path edgenew

a b

new edge

(b) One occurrence of the new edge is su�cient

Figure 1: Transitive closure after an edge insertion

ure 1(b)).

Maintenance after deletions

Suppose an existing edge (a; b) is deleted. TC can be

maintained as follows.

Let Sab = f(x; y) j TCold(x; a) ^ TCold(b; y)g be
the set of all paths (x; y) in the old TC which go

through (a; b). It is doubtful whether these paths

should belong to the new TC. (The letter S is for

suspicious.) Let Gnew = Gold � f(a; b)g and Tab =

(TCold�Sab)[G
new. Each pair in Tab is de�nitely in

the new TC. (The letter T is for trusty.) Surprisingly,

the new TC can be completely reconstructed from

Tab using several joins and projections given by the

following formula:

Tab [(Tab � Tab) [(Tab � Tab � Tab)

where R1 � R2 is de�ned as f(x; y) j 9u(R1(x; u) ^
R2(u; y)g for any pair of relations R1 and R2.

So the new transitive closure contains (1) all trusty

paths, (2) all paths constructed by concatenating

two consecutive trusty paths, and (3) all paths con-

structed by concatenating three consecutive trusty

paths.

The correctness of the above formula for construct-

ing the new TC is shown in [9, 8], and the correctness

relies on the following property. Suppose (x1; xk) is
in Sab and there is a path x1; x2; :::; xk in the new

graph that does not use the edge (a; b). Then there

must exist i < k such that no path of the new graph

from x1 to xi uses the edge (a; b) and no path of the

new graph from xi+1 to xk uses the edge (a; b).
We illustrate the maintenance of TC by consid-

ering deleting the edge (a; b) from the acyclic graph

given in Figure 2.

ba

c

54321

Figure 2: TC of acyclic graph after deleting (a; b)

� The contents of Sab and Tab are as follows:

Sab

1 b=4=5

2 b=4=5

3 b=4=5

a b=4=5

c b=4=5

Tab

1 2=3=a=c

2 3=a=c

3 a=c

c a=b

b 4=5

4 5

Here a pair of form (x; u=v=w) stands for pairs
(x; u); (x; v); (x;w).

� All the paths of the new graph Gnew are now

derived from Tab through zero, e.g. for the case

of (1; c), one, e.g. (1; b), or two joins, e.g. (1; 5),
followed by projections. It is more instructive to

visualize all the edges in the above �gure other

than (a; b) as a sequence of edges.

3 Transitive closure of undi-

rected graphs

We now show how to maintain the transitive closure

of undirected graphs in the relational calculus. An

undirected graph contains the edge from a node y
to a node x whenever it contains the edge from x
to y. While the TC of acyclic graphs can be main-

tained without maintaining additional views, the TC
of undirected graphs can only be maintained if we

also maintain some auxiliary relations (views).

The �rst FOIES that maintains the transitive clo-

sure of undirected graph using nothing more than

pure relational calculus was given in [30] and an im-

proved (space-wise optimal) FOIES was subsequently

developed in [10]. The queries sketched below are

mainly derived from the former; the maintenance of

the required total order was given in [10]. The FOIES

given below uses the relational calculus as the mainte-

nance language, it handles both tuple insertions and

tuple deletions, but it uses auxiliary relations.

We again assume these schemas: G for the input

undirected graph and TC for the transitive closure.

A (near) total order LT on the nodes is needed,

for choosing a node among a set of nodes that are

indistinguishable in relational calculus. In practical

systems, LT can be any total ordering available for

3

the application and need not be maintained. In the

theoretical consideration, LT must and can be main-

tained, and the details of this maintenance can be

found in [10].

To maintain TC, we need to maintain two addi-

tional auxiliary relations: FOREST(A;B) for a span-

ning forest of the graph (FOREST is also symmetric),

THRU(A; V;B) for indicating that V is on the unique

path from A to B in FOREST if the nodes A and B are

connected. The contents of the auxiliary relations are

dependent on the order of the updates to the graph,

i.e. the update history leading to the current graph.

Clearly we can derive the transitive closure of

an undirected graph as a relational-calculus view of

THRU easily. We need to demonstrate how to main-

tain the auxiliary relations FOREST and THRU.

To simplify the presentation, let Eq(x; y; c; d) de-
note the formula (x = c ^ y = d) _ (x = d ^ y = c).

Maintaining FOREST and THRU after insertions

Suppose a new edge (a; b) is inserted. We need to

change FOREST only if the inserted edge connects

two previously disconnected trees (or equivalently

a and b were not previously connected). There-

fore we let FORESTnew be FORESTold [f(a; b); (b; a) j
:THRUold(a; a; b)g.

The queries for maintaining THRU resembles in a

way the maintenance of TC of directed graphs after

an edge insertion. Speci�cally, THRUnew is given by:

f(x; z; y) jTHRUold(x; z; y)
_(Eq(x; y; a; b) ^ (z = a _ z = b))

_:THRUold(x; x; y)^

9u9vEq(u; v; a; b) ^ THRUold(x; x; u)

^THRUold(v; v; y) ^ (z = a _ z = b

_THRUold(x; u; z) _ THRUold(v; y; z))g

Roughly, the formula above states that the new THRU

contains the old THRU, the new edge (a; b), and paths

formed by paths in the old THRU and the new edge

(a; b).

Maintaining FOREST and THRU after deletions

Suppose an existing edge (a; b) is deleted. We �rst

update LTold to LT
new. If (a; b) is in FOREST

old, we

remove it. Deleting (a; b) from FOREST
old may cause

one tree to split into two. When this happens, there

can be either none or several edges inGnew which con-

nect these two trees. For the former, we only need

to eliminate relevant tuples in THRU
old to complete

the maintenance. For the latter, we �rst delete rel-

evant tuples from THRU
old; then we pick a replace-

ment edge and insert it into the spanning forest; �-

nally we insert tuples into THRU that are relevant to

the replacement edge. The procedure of inserting the

replacement edge is identical to the maintenance of

FOREST and THRU upon an insertion, and hence will

not be repeated here.

We describe the deletion and replacement edge se-

lection steps in the following.

Suppose (a; b) belongs to FORESTold. Let FOREST1

be a temporary relation which denotes FORESTold �

f(a; b)g. Let THRU
1 be the corresponding ver-

sion of THRU for FOREST
1; this can be derived

by f(x; z; y) j THRUold(x; z; y) ^ :THRUold(x; a; y) ^
:THRUold(x; b; y)g.

The candidate replacement edges are those edges

(x; y) of the graph such that x and a are in one tree of

FOREST
1 and y and b are in another tree of FOREST1:

Gnew(x; y) ^ THRU1(x; a; a) ^ THRU1(b; b; y). We use

the LTnew relation to pick the smallest of these edges,

and then add it to FOREST. As mentioned above,

the addition is done by essentially the same steps of

maintenance as the insertion case.

We now use an example to illustrate the mainte-

nance algorithms. Because G, FOREST, and the �rst

and last columns of THRU are symmetric, we will only

show half of the edges for clarity; furthermore, LT is

not symmetric and only the chain part is shown.

Suppose our initial graph G is as given below.

G

a b

c d

c e

d e

LT

a b

b c

c d

d e

� � �

FOREST

a b

c e

d e

THRU

a a=b b

c c=e e

d d=e e

c c=d=e d

Then the corresponding LT, FOREST, and THRU re-

lations can be as above. The notation (a; a=b; b) is a
shorthand for the two tuples of (a; a; b) and (a; b; b).

Suppose we insert the edge (b; c). Since both nodes
are already in G, LT is not modi�ed. Our mainte-

nance algorithm will add the following tuples into the

remaining two relations:

+FOREST

b c

+THRU

a a=b=c c

a a=b=c=e e

a a=b=c=e=d d

b b=c c

b b=c=e= e

b b=c=e=d d

The edge (b; c) is inserted into FOREST because it

connects two previously disconnected trees.

The contents of LT, FOREST, and THRU will remain

the same when edges (a; c) and (a; e) are subsequently

4

inserted to G. The new graph G is shown below.

G

a b

a c

a e

b c

c d

c e

d e

a

b

c

e d

Now suppose (a; b) is deleted from the current G
(shown above). There is no need to change LT. The

actions to FOREST and THRU are as follows.

� The edge (a; b) is deleted from FOREST.

� The following tuples and their symmetries are

deleted from THRU:

a a=b b

a a=b=c c

a a=b=c=e e

a a=b=c=e=d d

� (a; c) and (a; e) are two candidate replacement

edges for (a; b), and (a; c) is chosen as c is less

than e according to LT.

� The replacement edge is inserted into FOREST,

and THRU is updated accordingly using the in-

sertion algorithm. The resulting relations are:

G

a c

a e

b c

c d

c e

d e

LT

a b

b c

c d

d e

� � �

FOREST

a c

b c

c e

d e

THRU

a a=c c

a a=c=b b

a a=c=e e

a a=c=e=d d

b b=c c

b b=c=e= e

b b=c=e=d d

c c=e e

c c=d=e d

d d=e e

4 Regular chain Datalog views

In [13, 12], algorithms are given for constructing

FOIES for all views de�ned by regular chain Datalog

programs, for single-tuple insertions. Observe that

these handle a class of views, whereas the construc-

tions of the previous two sections were only designed

for individual views.

A chain Datalog program is a set of rules of the

form p(x1; xn+1) q1(x1; x2); � � � ; qn(xn; xn+1), and

it is regular if, for each rule, all but the rightmost

relation symbol are base relations. For example, the

following is a regular chain Datalog program.

p1(x; y) p(x; y)
p1(x; y) q(x; y)
p1(x; y) q(x; z); p1(z; y)
p(x; y) s(x; z); p1(z; y)
p(x; y) t(x; z); p(z; y)

To construct an FOIES, roughly, we �rst rewrite

the regular expression for the program into a form

which does not use the empty word, the empty set,

and the � operator (but it can use the + operator).

Then we de�ne one derived predicate for each regular

subexpression whose last operator is the + operator.

Then we will maintain all these derived relations as

auxiliary relations. The way to maintain them is very

much like the maintenance of transitive closure of di-

rected graphs after edge insertions, except that more

insertion rules are needed because the underlying reg-

ular expressions are more involved. The details can

be found in [12].

In [10] an FOIES for the same generation view over

acyclic graphs is given.

5 Set-based updates

In [12] extension to the FOIES for the TC of directed

graphs is given to deal with the insertion of a special

type, called Cartesian closed, of sets of edges. Essen-

tially the extended FOIES can maintain the TC after

the insertion of the union of a bounded number of

Cartesian products of node sets. This is especially

useful for the situation when the TC is over a view

de�ned by union of conjunctive queries; a decision

procedure is also given for deciding if that view is

Cartesian closed for insertions of tuples to the base

relations. Interestingly, this extension can also be

used to build an FOIES for the maintenance of views

de�ned by arbitrary regular chain Datalog programs

(Section 4).

In [8] the FOIES for TC of acyclic graphs is ex-

tended to deal with the deletion of \acyclic" edges,

the deletion of \anti-chain" sets of edges, and the

deletion of \anti-chain" sets of nodes, all from arbi-

trary directed graphs.

6 Space complexity

The ability to maintain a view de�ned by a more

powerful language using an algorithm written in a

less powerful language may incur some extra cost in

space for data storage. This cost can be measured in

5

terms of the maximal arity of the auxiliary relations.

Questions of interest include the following:

� What is the arity of the most space e�cient

FOIES for a view?

� Construct an FOIES, using auxiliary relations

with no more than of a given arity, for a view.

� Is the arity hierarchy strict?

These questions have been considered in [10, 15] and

some answers are known.

The most space-e�cient FOIES for some views have

been given. For example, for transitive closure of

undirected graphs, the minimum arity of its FOIES

is exactly two. (Observe that the FOIES given above

for this view uses ternary auxiliary relations.)

The technique used to show that a certain arity is

the optimal is either a modi�ed Ehrenfeucht-Fra��ss�e

game technique or an information theoretic technique

[10, 15]. In general, it has been shown that the arity-

based hierarchy is strict for all arities. However, the

strictness proof uses queries with input relations hav-

ing arities much larger than the auxiliary relations.

It is still open whether the hierarchy remains strict

for arities two or larger when the input relations of

queries have arities bounded by a �xed number such

as two, or by the arities of the auxiliary relations.

One other class of views with known optimal FOIES

arity bounds are concerned about counting. Exam-

ples include the following: The parity query (whether

a set has an even number of elements) can be main-

tained without auxiliary relations [10]. The MOD3

query (whether the number of elements in a set is

a multiple of 3) can be maintained using just unary

auxiliary relations [10]. Somewhat surprisingly, the

EQCk query which tests whether two k-ary relations

have equal cardinalities, is known to have an FOIES

using only binary auxiliary relations [14]. Most other

views with known optimal FOIES arity bounds are

concerned about relatives of counting and transitive

closure.

An FOIES can be either deterministic or nonde-

terministic, depending on whether its (stored) auxil-

iary relations are deterministic or nondeterministic,

i.e. whether they depend on the order of the updates

to reach a database state. The following results are

reported in [11]. The nondeterministic FOIES are

more powerful than the deterministic ones: determin-

istic FOIES using auxiliary relations with arity � k
are shown to be strictly weaker than their nondeter-

ministic counterparts for each k � 1. Furthermore,

there is a simple view which has a nondeterministic

FOIES with binary auxiliary relations but does not

have any deterministic FOIES with auxiliary relations

of any arity.

7 SQL as the maintenance lan-

guage

While an FOIES uses relational calculus as its mainte-

nance language, practical relational systems support

more powerful query languages such as SQL. Thus it

is of interest to study incremental evaluation systems

with SQL as the maintenance language.

There are two variants of such incremental evalua-

tion systems. The notation SQLIESnest is used to de-

note incremental evaluation systems where both the

input database and the answer are at relations, but

the auxiliary database may involve nested relations.

The notation SQLIES is used to denote systems whose

auxiliary database is also restricted to at relations.

(SQLIES can also create a very large number of new

symbols, unlike FOIES which does not create any.)

Thus SQLIES approximates more closely what could

be done in a relational database, which can store only

at relations.

Many questions about the power of SQLIES have

been answered recently. [5] showed that SQLIES us-

ing no auxiliary relations is unable to maintain tran-

sitive closure of arbitrary graphs. In [7], it was proved

that transitive closure of arbitrary graphs remains un-

maintainable in SQLIES even in the presence of aux-

iliary data whose degrees are bounded by a constant,

or are extremely small compared to the size of the

input database.

On the positive side, [26] recently showed that if

the bounded degree constraint on auxiliary data is

removed, transitive closure of arbitrary graphs be-

comes maintainable in SQLIES. This is also true for

the alternating path query, which is complete for

polynomial-time. In [26] it was also shown that

SQLIESnest and SQLIES are equivalent. That means

the restriction to at relations does not incur a loss in

power. Since many problems have a clearer and sim-

pler implementation in SQLIESnest, this equivalence

gives us a way to \port" such theoretical implemen-

tations to the more realistic platform of commercial

SQL database systems.

One can also ask what exactly is the limit of the

power of SQLIES. Results aimed at answering this

question have recently become available [28]. On

the positive side, all relational queries expressible in

second-order logic, and hence having the polynomial-

hierarchy data complexity [23], are maintainable in

SQLIES in a uniform manner. On the negative side,

this is very close to the upper bound on the power

6

of SQLIES. Furthermore, one must store a great deal

of auxiliary information, either as nested relations or

by creating new constants. Nonetheless, such mainte-

nance systems can give much more power to practical

systems.

8 Other related work

In this section we sketch some other related work.

Such work can be divided into work related to FOIES,

and work using a host programming language as the

maintenance language, either from a database per-

spective or from a more general graph algorithmic

perspective. Pointers to more general directions are

also given.

Other work on FOIES: [14] discussed some relation-

ships between FOIES and �1
1 arity hierarchies. [16]

shows how to maintain tree isomorphism (which can-

not be de�ned even in relational calculus extended

with the transitive closure operator). [4] considered

the maintenance of constrained transitive closure of

graphs with weighted edges (or nodes) by conjunc-

tive queries. [29] investigated how to maintain the

all-pairs shortest paths view and other related views

for undirected graphs after insertions and deletions,

using relational calculus, +; <.
[6] discusses how to maintain the transitive closure

using SQL, by translating results using the relational

calculus. [31] reports an implementation of incremen-

tal maintenance of some recursive views.

Work using host language as maintenance lan-

guage but from a database perspective: FOIES

is related to e�cient maintenance of (strati�ed)

databases [3, 24], where the goal is to e�ciently com-

pute the standard model of a strati�ed database af-

ter a database update. The latter is similar to FOIES

in using the previous standard model (analogous to

the auxiliary relations) to simplify the task of com-

puting the standard model (query answer) after the

update. Rather than storing intermediate relations,

these approaches store reasons (or \supports") for in-

cluding computed facts [3], or use meta-programs [24]

to compute the di�erence between successive models.

In [32], incremental evaluation of Datalog: is studied

for its application to parallelism. Their approach as-

sociates with each derived fact a collection of records

of counters, one for each iteration in bottom-up eval-

uation. The counters remember the number of times

the fact is derived, and the number of times the fact is

deleted. The algorithms can handle general Datalog:

programs by using these counters from the appropri-

ate iterations, but at the price of using recursive al-

gorithms.

Graph algorithms: Also related to FOIES are on-

line graph algorithms [21, 19, 25, 22]. Graph algo-

rithms for online evaluation of transitive closure of

graphs are given in [21, 19, 18], and a method to op-

timize transitive queries by using subtrees in graphs

constructed in previous evaluations is presented in

[22]. The main di�erence is that they use more

elaborate data structures and recursive algorithms,

whereas an FOIES only uses relations and nonrecur-

sive queries.

Further pointers: The framework of FOIES is also

closely related to a branch of computational complex-

ity and of �nite model theory, called descriptive com-

plexity [20]. Moreover, [17] contains a collection of

papers on many di�erent issues regarding material-

ized views.

9 Concluding remarks

In summary, we can see that incremental evaluation

systems are a convenient way to add expressive power

to existing database systems, and they are also a

way to speed up the process of computing the view

contents. Some of these systems can be readily im-

plemented in real applications, although some other

practical issues such as indexing may need to be con-

sidered.

One advantage of an FOIES over IES using other

maintenance languages is that it has great potential

for parallelization, because it uses the relational cal-

culus, which has a constant-time parallel complexity

AC0 [1], as its maintenance language.

There are still many research problems to be con-

sidered. For example, views with known FOIES are

still a minority among possible views, and it is of

interest to decide whether FOIES exist for the major-

ity of views. An interesting problem is to �nd more

space-e�cient fragment of all SQLIES. An interesting

theoretical problem is whether the arity hierarchy is

strict for a limited input arity.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] A. V. Aho and J. D. Ullman. Universality of data re-

trieval languages. In Proc Symposium on Principles

of Programming Languages, Texas, pages 110{120,

Jan, 1979.

[3] K. R. Apt and J.-M. Pugin. Maintenance of strat-

i�ed databases viewed as a belief revision system.

In Proc. ACM Symp. on Principles of Database Sys-

tems, pages 136{145, 1987.

7

[4] G. Dong and R. Kotagiri. Maintaining constrained

transitive closure by conjunctive queries. Proc. Int.

Conf on Deductive and Object-Oriented Databases,

Switzerland, Springer-Verlag, 1997.

[5] G. Dong, L. Libkin, and L. Wong. On impossibility

of decremental recomputation of recursive queries in

relational calculus and SQL. In Proc. 5th Int. Work-

shop on Database Programming Languages, Septem-

ber 1995, Springer Electronic Workshops in Comput-

ing, 1996. Available at http://www.springer.co.uk

/eWiC/Workshops/DBPL5.html

[6] G Dong, L Libkin, J Su and L Wong. Maintaining

transitive closure of graphs in SQL. Int'l J. of Infor-

mation Technology, 5(1):46{78, 1999.

[7] G. Dong, L. Libkin, and L. Wong. Local properties of

query languages. In Proceedings of 6th International

Conference on Database Theory, pages 140{154, Del-

phi, Greece, Jan 1997.

[8] G. Dong and C. Pang. Maintaining transitive closure

in �rst-order after node-set and edge-set deletions.

Information Processing Letters, 62(3):193{199, 1997.

[9] G. Dong and J. Su. Incremental and decremental

evaluation of transitive closure by �rst-order queries.

Information and Computation, 120(1):101{106, July

1995.

[10] G. Dong and J. Su. Arity bounds in �rst-order incre-

mental evaluation and de�nition of polynomial time

database queries. Journal of Computer and Sys-

tem Sciences, 57(3):289{308, December 1998. Pre-

liminary version in Proc of ACM Symp. on Princi-

ples of Database Systems, 1995.

[11] G. Dong and J. Su. Deterministic FOIES are strictly

weaker. Annals of Mathematics and Arti�cial Intel-

ligence, 19(1-2):127{146, 1997.

[12] G. Dong, J. Su, and R. Topor. Nonrecursive in-

cremental evaluation of Datalog queries. Annals of

Mathematics and Arti�cial Intelligence, 14:187{223,

1995.

[13] G. Dong and R. Topor. Incremental evaluation of

datalog queries. In LNCS 646: Proceedings of 4th In-

ternational Conference on Database Theory, Berlin,

Germany, pages 282{296. Springer-Verlag, October

1992.

[14] G. Dong and L. Wong. Some relationships between

FOIES and �1

1 arity hierarchies. Bulletin of EATCS,

61:72{79, February 1997.

[15] G. Dong and L. Zhang. Separating Auxiliary Arity

Hierarchy of First-Order Incremental Evaluation Us-

ing (3+1)-ary Input Relations. TR 97/13, CS Dept,

Univ of Melbourne.

[16] K. Etessami. Dynamic Tree Isomorphism via First-

Order Updates. PODS 1998: 235-243.

[17] A. Gupta and I. S. Mumick (eds). Materialized

Views: Techniques, Implementations, and Applica-

tions. MIT Press, 1999.

[18] M. R. Henzinger and V. King. Fully dynamic bi-

connectivity and transitive closure. In FOCS 1995:

664-672.

[19] T. Ibaraki and N. Katoh. On-line computation of

transitive closure of graphs. Information Processing

Letters, 16:95-97, 1983.
[20] N. Immerman. Descriptive Complexity. Springer,

New York. December, 1998.
[21] G.F. Italiano. Amortized e�ciency of a path re-

trieval data structure. Theoretical Computer Science,

48:273-281, 1986.
[22] H. Jakobsson. On materializing views and online

queries. In Proc. Int. Conf on Database Theory,

LNCS 646, Springer-Verlag, 1992.
[23] D. Johnson. A Catalog of Complexity Classes, vol-

ume A of Handbook of Theoretical Computer Science,

pages 67{161. North Holland, 1990.
[24] V. K�uchenho�. On the e�cient computation of

the di�erence between consecutive database states.

In C. Delobel, M. Kifer, and Y. Masunaga, edi-

tors, Proc. Second Int. Conf. on Deductive Object-

Oriented Databases, LNCS 566, pages 478{502.

Springer-Verlag, 1991.
[25] J. La Poutre and J. van Leeuwen. Maintenance

of transitive closures and transitive reductions of

graphs. Tech Report RUU-CS-87-25, Dept of CS,

University of Utrecht, The Netherlands, 1987. Ex-

tended abstract in LNCS 314, pp. 106-120.
[26] L. Libkin and L. Wong. Incremental recomputation

of recursive queries with nested sets and aggregate

functions. In LNCS 1369: Proc of 6th Int'l Workshop

on Database Programming Languages, Estes Park,

Colorado, August 1997, pages 222{238. Springer-

Verlag.
[27] L. Libkin and L. Wong. Query languages for bags

and aggregate functions. J. of Computer and System

Sciences, 55(2):241{272, October 1997.
[28] L. Libkin and L. Wong. On the power of incre-

mental evaluation in SQL-like languages. In Proc of

7th Int'l Workshop on Database Programming Lan-

guages. See also: SQL can maintain polynomial-

hierarchy queries. Technical report, Institute of Sys-

tems Science, Singapore, 1997.
[29] C. Pang, R. Kotagiri and G. Dong. Incremental

FO(+; <) maintenance of all-pairs shortest paths for

undirected graphs after insertions and deletions. In

Proc of Int'l Conf on Database Theory, Jerusalem,

Jan 1999. More details in C Pang's PhD thesis:

Maintenance of Reachability in Graphs Using First-

Order Queries with Addition and Less-than. Univ of

Melbourne, 1999.
[30] S. Patnaik and N. Immerman. Dyn-FO: A paral-

lel dynamic complexity class. J. of Computer and

System Sciences, 55(2):199{209, Oct 1997. Prelimi-

nary version in Proc. of ACM Symp. on Principles

of Database Systems, 1994.
[31] T.A. Schultz. ADEPT { The advanced database en-

vironment for planning and tracking. Bell Labs Tech-

nical Journal, 3(3):3{9, 1998.
[32] O. Wolfson, H. M. Dewan, S. J. Stolfo, and Y. Yem-

ini. Incremental Evaluation of Rules and Its Rela-

tionship to Parallelism. In Proc. of ACM SIGMOD

Conference, pages 78{87, 1991.

8

