2009 |
15 | EE | Jirí Matousek,
Martin Tancer,
Uli Wagner:
Hardness of embedding simplicial complexes in Rd.
SODA 2009: 855-864 |
2008 |
14 | EE | Shakhar Smorodinsky,
Marek Sulovský,
Uli Wagner:
On Center Regions and Balls Containing Many Points.
COCOON 2008: 363-373 |
13 | EE | Jirí Matousek,
Martin Tancer,
Uli Wagner:
Hardness of embedding simplicial complexes in Rd
CoRR abs/0807.0336: (2008) |
2007 |
12 | EE | Ke Chen,
Amos Fiat,
Haim Kaplan,
Meital Levy,
Jirí Matousek,
Elchanan Mossel,
János Pach,
Micha Sharir,
Shakhar Smorodinsky,
Uli Wagner,
Emo Welzl:
Online Conflict-Free Coloring for Intervals.
SIAM J. Comput. 36(5): 1342-1359 (2007) |
2006 |
11 | EE | Uli Wagner:
On a Geometric Generalization of the Upper Bound Theorem.
FOCS 2006: 635-645 |
10 | EE | Jirí Matousek,
Micha Sharir,
Shakhar Smorodinsky,
Uli Wagner:
k-Sets in Four Dimensions.
Discrete & Computational Geometry 35(2): 177-191 (2006) |
2005 |
9 | EE | Amos Fiat,
Meital Levy,
Jirí Matousek,
Elchanan Mossel,
János Pach,
Micha Sharir,
Shakhar Smorodinsky,
Uli Wagner,
Emo Welzl:
Online conflict-free coloring for intervals.
SODA 2005: 545-554 |
8 | EE | Christoph Ambühl,
Uli Wagner:
The Clique Problem in Intersection Graphs of Ellipses and Triangles.
Theory Comput. Syst. 38(3): 279-292 (2005) |
2004 |
7 | EE | Jirí Matousek,
Uli Wagner:
New Constructions of Weak epsilon-Nets.
Discrete & Computational Geometry 32(2): 195-206 (2004) |
6 | EE | Joachim Giesen,
Uli Wagner:
Shape Dimension and Intrinsic Metric from Samples of Manifolds.
Discrete & Computational Geometry 32(2): 245-267 (2004) |
2003 |
5 | EE | Uli Wagner:
On the rectilinear crossing number of complete graphs.
SODA 2003: 583-588 |
4 | EE | Joachim Giesen,
Uli Wagner:
Shape dimension and intrinsic metric from samples of manifolds with high co-dimension.
Symposium on Computational Geometry 2003: 329-337 |
2002 |
3 | EE | Christoph Ambühl,
Uli Wagner:
On the Clique Problem in Intersection Graphs of Ellipses.
ISAAC 2002: 489-500 |
2001 |
2 | EE | Uli Wagner,
Emo Welzl:
A Continuous Analogue of the Upper Bound Theorem.
Discrete & Computational Geometry 26(2): 205-219 (2001) |
2000 |
1 | EE | Uli Wagner,
Emo Welzl:
Origin-embracing distributions or a continuous analogue of the upper bound theorem.
Symposium on Computational Geometry 2000: 50-56 |