2009 |
64 | EE | Y. G. Petalas,
Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Improving fuzzy cognitive maps learning through memetic particle swarm optimization.
Soft Comput. 13(1): 77-94 (2009) |
2008 |
63 | EE | Vasileios L. Georgiou,
Philipos D. Alevizos,
Michael N. Vrahatis:
Fuzzy Evolutionary Probabilistic Neural Networks.
ANNPR 2008: 113-124 |
62 | EE | Konstantinos E. Parsopoulos,
K. Skouri,
Michael N. Vrahatis:
Particle Swarm Optimization for Tackling Continuous Review Inventory Models.
EvoWorkshops 2008: 103-112 |
61 | EE | Michael G. Epitropakis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Non-monotone differential evolution.
GECCO 2008: 527-528 |
60 | EE | A. D. Klamargias,
Konstantinos E. Parsopoulos,
Philipos D. Alevizos,
Michael N. Vrahatis:
Particle filtering with particle swarm optimization in systems with multiplicative noise.
GECCO 2008: 57-62 |
59 | EE | Konstantinos E. Parsopoulos,
Voula C. Georgopoulos,
Michael N. Vrahatis:
A technique for the visualization of population-based algorithms.
IEEE Congress on Evolutionary Computation 2008: 1694-1701 |
58 | EE | Michael G. Epitropakis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Balancing the exploration and exploitation capabilities of the Differential Evolution Algorithm.
IEEE Congress on Evolutionary Computation 2008: 2686-2693 |
57 | EE | Dimitris K. Tasoulis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Computational Intelligence Algorithms and DNA Microarrays.
Computational Intelligence in Bioinformatics 2008: 1-31 |
56 | EE | Y. G. Petalas,
Chris Antonopoulos,
Tassos Bountis,
Michael N. Vrahatis:
Evolutionary Methods for the Approximation of the Stability Domain and Frequency Optimization of Conservative Maps.
I. J. Bifurcation and Chaos 18(8): 2249-2264 (2008) |
55 | EE | Vasileios L. Georgiou,
Philipos D. Alevizos,
Michael N. Vrahatis:
Novel Approaches to Probabilistic Neural Networks Through Bagging and Evolutionary Estimating of Prior Probabilities.
Neural Processing Letters 27(2): 153-162 (2008) |
2007 |
54 | EE | Y. G. Petalas,
Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Entropy-based Memetic Particle Swarm Optimization for computing periodic orbits of nonlinear mappings.
IEEE Congress on Evolutionary Computation 2007: 2040-2047 |
53 | EE | Nicos G. Pavlidis,
E. G. Pavlidis,
Michael G. Epitropakis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Computational intelligence algorithms for risk-adjusted trading strategies.
IEEE Congress on Evolutionary Computation 2007: 540-547 |
52 | EE | E. C. Laskari,
Gerasimos C. Meletiou,
Yannis C. Stamatiou,
Michael N. Vrahatis:
Cryptography and Cryptanalysis Through Computational Intelligence.
Computational Intelligence in Information Assurance and Security 2007: 1-49 |
51 | EE | Y. G. Petalas,
Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Memetic particle swarm optimization.
Annals OR 156(1): 99-127 (2007) |
50 | EE | E. C. Laskari,
Gerasimos C. Meletiou,
Yannis C. Stamatiou,
Michael N. Vrahatis:
Applying evolutionary computation methods for the cryptanalysis of Feistel ciphers.
Applied Mathematics and Computation 184(1): 63-72 (2007) |
49 | EE | Nicos G. Pavlidis,
Michael N. Vrahatis,
P. Mossay:
Existence and computation of short-run equilibria in economic geography.
Applied Mathematics and Computation 184(1): 93-103 (2007) |
48 | EE | Todor Ganchev,
Dimitris K. Tasoulis,
Michael N. Vrahatis,
Nikos Fakotakis:
Generalized locally recurrent probabilistic neural networks with application to text-independent speaker verification.
Neurocomputing 70(7-9): 1424-1438 (2007) |
2006 |
47 | EE | Dimitris K. Tasoulis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Differential Evolution Algorithms for Finding Predictive Gene Subsets in Microarray Data.
AIAI 2006: 484-491 |
46 | EE | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Studying the Performance of Unified Particle Swarm Optimization on the Single Machine Total Weighted Tardiness Problem.
Australian Conference on Artificial Intelligence 2006: 760-769 |
45 | EE | Dimitris K. Tasoulis,
E. C. Laskari,
Gerasimos C. Meletiou,
Michael N. Vrahatis:
Privacy Preserving Unsupervised Clustering over Vertically Partitioned Data.
ICCSA (5) 2006: 635-643 |
44 | EE | Dimitris K. Tasoulis,
Dimitrios Zeimpekis,
Efstratios Gallopoulos,
Michael N. Vrahatis:
Oriented k-windows: A PCA driven clustering method.
Advances in Web Intelligence and Data Mining 2006: 319-328 |
43 | EE | Dimitris K. Tasoulis,
Panagiota Spyridonos,
Nicos G. Pavlidis,
Vassilis P. Plagianakos,
Panagiota Ravazoula,
George Nikiforidis,
Michael N. Vrahatis:
Cell-nuclear data reduction and prognostic model selection in bladder tumor recurrence.
Artificial Intelligence in Medicine 38(3): 291-303 (2006) |
42 | EE | Vassilis P. Plagianakos,
George D. Magoulas,
Michael N. Vrahatis:
Distributed computing methodology for training neural networks in an image-guided diagnostic application.
Computer Methods and Programs in Biomedicine 81(3): 228-235 (2006) |
41 | EE | George D. Magoulas,
Michael N. Vrahatis:
Adaptive Algorithms for Neural Network Supervised Learning: a Deterministic Optimization Approach.
I. J. Bifurcation and Chaos 16(7): 1929-1950 (2006) |
40 | EE | Nicos G. Pavlidis,
Dimitris K. Tasoulis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Computational Intelligence Methods for Financial Time Series Modeling.
I. J. Bifurcation and Chaos 16(7): 2053-2062 (2006) |
39 | EE | Dimitris K. Tasoulis,
Michael N. Vrahatis:
Unsupervised Clustering Using Fractal Dimension.
I. J. Bifurcation and Chaos 16(7): 2073-2079 (2006) |
38 | EE | Vasileios L. Georgiou,
Nicos G. Pavlidis,
Konstantinos E. Parsopoulos,
Philipos D. Alevizos,
Michael N. Vrahatis:
New Self-adaptive Probabilistic Neural Networks in Bioinformatic and Medical Tasks.
International Journal on Artificial Intelligence Tools 15(3): 371-396 (2006) |
37 | EE | Vassilis P. Plagianakos,
George D. Magoulas,
Michael N. Vrahatis:
Evolutionary training of hardware realizable multilayer perceptrons.
Neural Computing and Applications 15(1): 33-40 (2006) |
36 | EE | Nicos G. Pavlidis,
Vassilis P. Plagianakos,
Dimitris K. Tasoulis,
Michael N. Vrahatis:
Financial forecasting through unsupervised clustering and neural networks.
Operational Research 6(2): 103-127 (2006) |
2005 |
35 | | Nicos G. Pavlidis,
Dimitris K. Tasoulis,
Michael N. Vrahatis:
Time Series Forecasting Methodology for Multiple-Step-Ahead Prediction.
Computational Intelligence 2005: 456-461 |
34 | EE | Dimitris K. Tasoulis,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima.
Congress on Evolutionary Computation 2005: 1847-1854 |
33 | EE | Dimitris K. Tasoulis,
Michael N. Vrahatis:
The new window density function for efficient evolutionary unsupervised clustering.
Congress on Evolutionary Computation 2005: 2388-2394 |
32 | EE | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Unified Particle Swarm Optimization in Dynamic Environments.
EvoWorkshops 2005: 590-599 |
31 | EE | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems.
ICNC (3) 2005: 582-591 |
30 | EE | Ch. Skokos,
Konstantinos E. Parsopoulos,
P. A. Patsis,
Michael N. Vrahatis:
Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials
CoRR abs/astro-ph/0502164: (2005) |
29 | EE | Elpiniki Papageorgiou,
Konstantinos E. Parsopoulos,
Chrysostomos D. Stylios,
Petros P. Groumpos,
Michael N. Vrahatis:
Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization.
J. Intell. Inf. Syst. 25(1): 95-121 (2005) |
28 | EE | Aristoklis D. Anastasiadis,
George D. Magoulas,
Michael N. Vrahatis:
New globally convergent training scheme based on the resilient propagation algorithm.
Neurocomputing 64: 253-270 (2005) |
27 | EE | Aristoklis D. Anastasiadis,
George D. Magoulas,
Michael N. Vrahatis:
Sign-based learning schemes for pattern classification.
Pattern Recognition Letters 26(12): 1926-1936 (2005) |
26 | EE | Dimitris K. Tasoulis,
Michael N. Vrahatis:
Unsupervised clustering on dynamic databases.
Pattern Recognition Letters 26(13): 2116-2127 (2005) |
25 | EE | Dimitris J. Kavvadias,
F. S. Makri,
Michael N. Vrahatis:
Efficiently Computing Many Roots of a Function.
SIAM J. Scientific Computing 27(1): 93-107 (2005) |
2004 |
24 | EE | Aristoklis D. Anastasiadis,
George D. Magoulas,
Michael N. Vrahatis:
A New Learning Rates Adaptation Strategy for the Resilient Propagation Algorithm.
ESANN 2004: 1-6 |
23 | EE | Konstantinos E. Parsopoulos,
Elpiniki Papageorgiou,
Peter P. Groumpos,
Michael N. Vrahatis:
Evolutionary Computation Techniques for Optimizing Fuzzy Cognitive Maps in Radiation Therapy Systems.
GECCO (1) 2004: 402-413 |
22 | EE | Dimitris K. Tasoulis,
Liviu Vladutu,
Vassilis P. Plagianakos,
Anastasios Bezerianos,
Michael N. Vrahatis:
Online Neural Network Training for Automatic Ischemia Episode Detection.
ICAISC 2004: 1062-1068 |
21 | EE | Y. G. Petalas,
Dimitris K. Tasoulis,
Michael N. Vrahatis:
Dynamic Search Trajectory Methods for Neural Network Training.
ICAISC 2004: 241-246 |
20 | EE | Elpiniki Papageorgiou,
Konstantinos E. Parsopoulos,
Peter P. Groumpos,
Michael N. Vrahatis:
Fuzzy Cognitive Maps Learning through Swarm Intelligence.
ICAISC 2004: 344-349 |
19 | | Dimitris K. Tasoulis,
Michael N. Vrahatis:
Unsupervised distributed clustering.
Parallel and Distributed Computing and Networks 2004: 347-351 |
18 | EE | George D. Magoulas,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Neural network-based colonoscopic diagnosis using on-line learning and differential evolution.
Appl. Soft Comput. 4(4): 369-379 (2004) |
17 | | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
On the Computation of All Global Minimizers Through Particle Swarm Optimization.
IEEE Trans. Evolutionary Computation 8(3): 211-224 (2004) |
16 | EE | M. G. Karagiannopoulos,
Michael N. Vrahatis,
Gerasimos C. Meletiou:
A note on a secure voting system on a public network.
Networks 43(4): 224-225 (2004) |
2003 |
15 | EE | Dimitris K. Tasoulis,
Panagiota Spyridonos,
Nicos G. Pavlidis,
Dionisis Cavouras,
Panagiota Ravazoula,
George Nikiforidis,
Michael N. Vrahatis:
Urinary Bladder Tumor Grade Diagnosis Using On-line Trained Neural Networks.
KES 2003: 199-206 |
14 | EE | Panagiotis Alevizos,
Dimitris K. Tasoulis,
Michael N. Vrahatis:
Parallelizing the Unsupervised k-Windows Clustering Algorithm.
PPAM 2003: 225-232 |
13 | EE | Dimitris K. Tasoulis,
Panagiotis Alevizos,
Basilis Boutsinas,
Michael N. Vrahatis:
Parallel Unsupervised k-Windows: An Efficient Parallel Clustering Algorithm.
PaCT 2003: 336-344 |
2002 |
12 | EE | Panagiotis Alevizos,
Basilis Boutsinas,
Dimitris K. Tasoulis,
Michael N. Vrahatis:
Improving the Orthogonal Range Search k -Windows Algorithm.
ICTAI 2002: 239-245 |
11 | EE | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Particle swarm optimization method in multiobjective problems.
SAC 2002: 603-607 |
10 | EE | Michael N. Vrahatis,
Basilis Boutsinas,
Panagiotis Alevizos,
Georgios Pavlides:
The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm.
J. Complexity 18(1): 375-391 (2002) |
9 | EE | Bernard Mourrain,
Michael N. Vrahatis,
Jean-Claude Yakoubsohn:
On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree.
J. Complexity 18(2): 612-640 (2002) |
8 | | Konstantinos E. Parsopoulos,
Michael N. Vrahatis:
Recent approaches to global optimization problems through Particle Swarm Optimization.
Natural Computing 1(2-3): 235-306 (2002) |
7 | | Vassilis P. Plagianakos,
Michael N. Vrahatis:
Parallel evolutionary training algorithms for "hardware-friendly" neural networks.
Natural Computing 1(2-3): 307-322 (2002) |
2001 |
6 | EE | Basilis Boutsinas,
Michael N. Vrahatis:
Artificial nonmonotonic neural networks.
Artif. Intell. 132(1): 1-38 (2001) |
2000 |
5 | EE | George D. Magoulas,
Vassilis P. Plagianakos,
Michael N. Vrahatis:
Development and Convergence Analysis of Training Algorithms with Local Learning Rate Adaptation.
IJCNN (1) 2000: 21-26 |
4 | EE | Vassilis P. Plagianakos,
Michael N. Vrahatis:
Training Neural Networks with Threshold Activation Functions and Constrained Integer Weights.
IJCNN (5) 2000: 161-166 |
3 | | Michael N. Vrahatis,
George D. Magoulas,
Vassilis P. Plagianakos:
Globally Convergent Modification of the Quickprop Method.
Neural Processing Letters 12(2): 159-170 (2000) |
1999 |
2 | | George D. Magoulas,
Michael N. Vrahatis,
George S. Androulakis:
Improving the Convergence of the Backpropagation Algorithm Using Learning Rate Adaptation Methods.
Neural Computation 11(7): 1769-1796 (1999) |
1997 |
1 | EE | George D. Magoulas,
Michael N. Vrahatis,
George S. Androulakis:
Effective Backpropagation Training with Variable Stepsize.
Neural Networks 10(1): 69-82 (1997) |