D. M. Titterington

D. Mike Titterington

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

24EEJing-Hao Xue, D. Mike Titterington: Interpretation of hybrid generative/discriminative algorithms. Neurocomputing 72(7-9): 1648-1655 (2009)
23EEJing-Hao Xue, D. M. Titterington: Comment on "On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes". Neural Processing Letters 28(3): 169-187 (2008)
22EEJing-Hao Xue, D. Mike Titterington: Do unbalanced data have a negative effect on LDA? Pattern Recognition 41(5): 1558-1571 (2008)
21EEJing-Hao Xue, D. M. Titterington: Short note on two output-dependent hidden Markov models. Pattern Recognition Letters 29(9): 1424-1426 (2008)
20EEC. A. McGrory, D. M. Titterington: Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis 51(11): 5352-5367 (2007)
19EEAlexander N. Dolia, Christopher J. Harris, John Shawe-Taylor, D. Mike Titterington: Kernel ellipsoidal trimming. Computational Statistics & Data Analysis 52(1): 309-324 (2007)
18EEAlexander N. Dolia, Tijl De Bie, Christopher J. Harris, John Shawe-Taylor, D. M. Titterington: The Minimum Volume Covering Ellipsoid Estimation in Kernel-Defined Feature Spaces. ECML 2006: 630-637
17EED. Mike Titterington: Some Aspects of Latent Structure Analysis. SLSFS 2005: 69-83
16EEJ. Q. Shi, Roderick Murray-Smith, D. M. Titterington: Hierarchical Gaussian process mixtures for regression. Statistics and Computing 15(1): 31-41 (2005)
15EEBo Wang, D. M. Titterington: Variational Bayes Estimation of Mixing Coefficients. Deterministic and Statistical Methods in Machine Learning 2004: 281-295
14EEKazuyuki Tanaka, D. M. Titterington: Probabilistic Image Processing based on the Q-Ising Model by Means of the Mean-Field Method and Loopy Belief Propagation. ICPR (2) 2004: 40-43
13EEBo Wang, D. M. Titterington: Convergence and Asymptotic Normality of Variational Bayesian Approximations for Expon. UAI 2004: 577-584
12EEBo Wang, D. M. Titterington: Lack of Consistency of Mean Field and Variational break Bayes Approximations for State Space Models. Neural Processing Letters 20(3): 151-170 (2004)
11EEJian Qing Shi, Roderick Murray-Smith, D. M. Titterington, Barak A. Pearlmutter: Filtered Gaussian Processes for Learning with Large Data-Sets. European Summer School on Multi-AgentControl 2003: 128-139
10 Ernest Fokoué, D. M. Titterington: Mixtures of Factor Analysers. Bayesian Estimation and Inference by Stochastic Simulation. Machine Learning 50(1-2): 73-94 (2003)
9 Keith Humphreys, D. M. Titterington: Improving the Mean-Field Approximation in Belief Networks Using Bahadur's Reparameterisation of the Multivariate Binary Distribution. Neural Processing Letters 12(2): 183-197 (2000)
8 A. P. Dunmur, D. M. Titterington: Computational Bayesian Analysis of Hidden Markov Mesh Models. IEEE Trans. Pattern Anal. Mach. Intell. 19(11): 1296-1300 (1997)
7EEA. P. Dunmur, D. M. Titterington: On a Modification to the Mean Field EM Algorithm in Factorial Learning. NIPS 1996: 431-437
6EEG. Archer, D. M. Titterington: On some Bayesian/regularization methods for image restoration. IEEE Transactions on Image Processing 5(7): 989-995 (1995)
5EEAlison J. Gray, Jim Kay, D. M. Titterington: An Empirical Study of the Simulation of Various Models used for Images. IEEE Trans. Pattern Anal. Mach. Intell. 16(5): 507-513 (1994)
4EEWei Qian, D. M. Titterington: Bayesian Image Restoration: An Application to Edge-Preserving Surface Recovery. IEEE Trans. Pattern Anal. Mach. Intell. 15(7): 748-752 (1993)
3EEAlison J. Gray, Jim Kay, D. M. Titterington: On the estimation of noisy binary Markov random fields. Pattern Recognition 25(7): 749-768 (1992)
2EEAlan M. Thompson, John C. Brown, Jim Kay, D. M. Titterington: A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization. IEEE Trans. Pattern Anal. Mach. Intell. 13(4): 326-339 (1991)
1EED. Mike Titterington: An alternative stochastic supervisor in discriminant analysis. Pattern Recognition 22(1): 91-95 (1989)

Coauthor Index

1G. Archer [6]
2Tijl De Bie [18]
3John C. Brown [2]
4Alexander N. Dolia [18] [19]
5A. P. Dunmur [7] [8]
6Ernest Fokoué [10]
7Alison J. Gray [3] [5]
8Christopher J. Harris [18] [19]
9Keith Humphreys [9]
10Jim Kay [2] [3] [5]
11C. A. McGrory [20]
12Roderick Murray-Smith [11] [16]
13Barak A. Pearlmutter [11]
14Wei Qian [4]
15John Shawe-Taylor [18] [19]
16J. Q. Shi [16]
17Jian Qing Shi [11]
18Kazuyuki Tanaka [14]
19Alan M. Thompson [2]
20Bo Wang [12] [13] [15]
21Jing-Hao Xue [21] [22] [23] [24]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)