2009 |
16 | EE | J. Blümlein,
Manuel Kauers,
S. Klein,
Carsten Schneider:
Determining the closed forms of the $O(a_s^3)$ anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra
CoRR abs/0902.4091: (2009) |
15 | EE | J. Blümlein,
Manuel Kauers,
S. Klein,
Carsten Schneider:
From Moments to Functions in Quantum Chromodynamics
CoRR abs/0902.4095: (2009) |
14 | EE | Carsten Schneider:
A Symbolic Summation Approach to Find Optimal Nested Sum Representations
CoRR abs/0904.2323: (2009) |
2008 |
13 | EE | Carsten Schneider:
A Refined Difference Field Theory for Symbolic Summation
CoRR abs/0808.2543: (2008) |
12 | EE | Carsten Schneider:
Parameterized Telescoping Proves Algebraic Independence of Sums
CoRR abs/0808.2596: (2008) |
11 | EE | Carsten Schneider:
A refined difference field theory for symbolic summation.
J. Symb. Comput. 43(9): 611-644 (2008) |
2007 |
10 | EE | Manuel Kauers,
Carsten Schneider:
Symbolic summation with radical expressions.
ISSAC 2007: 219-226 |
9 | EE | I. Bierenbaum,
J. Blümlein,
S. Klein,
Carsten Schneider:
Difference Equations in Massive Higher Order Calculations
CoRR abs/0707.4659: (2007) |
8 | EE | Carsten Schneider:
Apery's Double Sum is Plain Sailing Indeed.
Electr. J. Comb. 14(1): (2007) |
2006 |
7 | EE | Manuel Kauers,
Carsten Schneider:
Application of unspecified sequences in symbolic summation.
ISSAC 2006: 177-183 |
6 | EE | Manuel Kauers,
Carsten Schneider:
Indefinite summation with unspecified summands.
Discrete Mathematics 306(17): 2073-2083 (2006) |
2005 |
5 | EE | Carsten Schneider:
Finding telescopers with minimal depth for indefinite nested sum and product expressions.
ISSAC 2005: 285-292 |
4 | EE | Carsten Schneider:
Some Notes On "When is 0.999... equal to 1?".
Mathematics, Algorithms, Proofs 2005 |
3 | EE | Carsten Schneider:
Degree Bounds to Find Polynomial Solutions of Parameterized Linear Difference Equations in Pi-Sigma-Fields.
Appl. Algebra Eng. Commun. Comput. 16(1): 1-32 (2005) |
2004 |
2 | EE | Carsten Schneider:
Symbolic summation with single-nested sum extensions.
ISSAC 2004: 282-289 |
1 | EE | Carsten Schneider:
The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application.
Discrete Mathematics & Theoretical Computer Science 6(2): 365-386 (2004) |