2008 |
58 | EE | Andreas Maurer,
Massimiliano Pontil:
A Uniform Lower Error Bound for Half-Space Learning.
ALT 2008: 70-78 |
57 | EE | Andreas Maurer,
Massimiliano Pontil:
Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces.
ALT 2008: 79-91 |
56 | EE | Andreas Argyriou,
Andreas Maurer,
Massimiliano Pontil:
An Algorithm for Transfer Learning in a Heterogeneous Environment.
ECML/PKDD (1) 2008: 71-85 |
55 | EE | Mark Herbster,
Guy Lever,
Massimiliano Pontil:
Online Prediction on Large Diameter Graphs.
NIPS 2008: 649-656 |
54 | EE | Mark Herbster,
Massimiliano Pontil,
Sergio Rojas Galeano:
Fast Prediction on a Tree.
NIPS 2008: 657-664 |
53 | EE | Andreas Argyriou,
Charles A. Micchelli,
Massimiliano Pontil:
When is there a representer theorem? Vector versus matrix regularizers
CoRR abs/0809.1590: (2008) |
52 | EE | Yiming Ying,
Massimiliano Pontil:
Online Gradient Descent Learning Algorithms.
Foundations of Computational Mathematics 8(5): 561-596 (2008) |
51 | EE | Andreas Argyriou,
Theodoros Evgeniou,
Massimiliano Pontil:
Convex multi-task feature learning.
Machine Learning 73(3): 243-272 (2008) |
2007 |
50 | EE | Andreas Argyriou,
Charles A. Micchelli,
Massimiliano Pontil,
Yiming Ying:
A Spectral Regularization Framework for Multi-Task Structure Learning.
NIPS 2007 |
49 | EE | Charles A. Micchelli,
Massimiliano Pontil:
Feature space perspectives for learning the kernel.
Machine Learning 66(2-3): 297-319 (2007) |
2006 |
48 | EE | Andreas Argyriou,
Raphael Hauser,
Charles A. Micchelli,
Massimiliano Pontil:
A DC-programming algorithm for kernel selection.
ICML 2006: 41-48 |
47 | EE | Andreas Argyriou,
Theodoros Evgeniou,
Massimiliano Pontil:
Multi-Task Feature Learning.
NIPS 2006: 41-48 |
46 | EE | Mark Herbster,
Massimiliano Pontil:
Prediction on a Graph with a Perceptron.
NIPS 2006: 577-584 |
2005 |
45 | EE | Andreas Argyriou,
Charles A. Micchelli,
Massimiliano Pontil:
Learning Convex Combinations of Continuously Parameterized Basic Kernels.
COLT 2005: 338-352 |
44 | EE | Mark Herbster,
Massimiliano Pontil,
Lisa Wainer:
Online learning over graphs.
ICML 2005: 305-312 |
43 | EE | Andreas Argyriou,
Mark Herbster,
Massimiliano Pontil:
Combining Graph Laplacians for Semi-Supervised Learning.
NIPS 2005 |
42 | EE | Charles A. Micchelli,
Massimiliano Pontil:
Learning the Kernel Function via Regularization.
Journal of Machine Learning Research 6: 1099-1125 (2005) |
41 | EE | André Elisseeff,
Theodoros Evgeniou,
Massimiliano Pontil:
Stability of Randomized Learning Algorithms.
Journal of Machine Learning Research 6: 55-79 (2005) |
40 | EE | Theodoros Evgeniou,
Charles A. Micchelli,
Massimiliano Pontil:
Learning Multiple Tasks with Kernel Methods.
Journal of Machine Learning Research 6: 615-637 (2005) |
39 | EE | Charles A. Micchelli,
Massimiliano Pontil:
On Learning Vector-Valued Functions.
Neural Computation 17(1): 177-204 (2005) |
38 | EE | Sauro Menchetti,
Fabrizio Costa,
Paolo Frasconi,
Massimiliano Pontil:
Wide coverage natural language processing using kernel methods and neural networks for structured data.
Pattern Recognition Letters 26(12): 1896-1906 (2005) |
2004 |
37 | EE | Charles A. Micchelli,
Massimiliano Pontil:
A Function Representation for Learning in Banach Spaces.
COLT 2004: 255-269 |
36 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
Regularized multi--task learning.
KDD 2004: 109-117 |
35 | EE | Charles A. Micchelli,
Massimiliano Pontil:
Kernels for Multi--task Learning.
NIPS 2004 |
34 | EE | Theodoros Evgeniou,
Massimiliano Pontil,
André Elisseeff:
Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers.
Machine Learning 55(1): 71-97 (2004) |
2003 |
33 | EE | Massimiliano Pontil:
Reproducing kernels and regularization methods in machine learning.
ESANN 2003: 185-196 |
32 | EE | Michiko Yamana,
Hiroyuki Nakahara,
Massimiliano Pontil,
Shun-ichi Amari:
On different ensembles of kernel machines.
ESANN 2003: 197-201 |
31 | EE | Theodoros Evgeniou,
Massimiliano Pontil,
Constantine Papageorgiou,
Tomaso Poggio:
Image Representations and Feature Selection for Multimedia Database Search.
IEEE Trans. Knowl. Data Eng. 15(4): 911-920 (2003) |
30 | EE | Massimiliano Pontil:
A note on different covering numbers in learning theory.
J. Complexity 19(5): 665-671 (2003) |
29 | EE | Yuan Yao,
Gian Luca Marcialis,
Massimiliano Pontil,
Paolo Frasconi,
Fabio Roli:
Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines.
Pattern Recognition 36(2): 397-406 (2003) |
28 | EE | Chikahito Nakajima,
Massimiliano Pontil,
Bernd Heisele,
Tomaso Poggio:
Full-body person recognition system.
Pattern Recognition 36(9): 1997-2006 (2003) |
2002 |
27 | | Andrea Passerini,
Massimiliano Pontil,
Paolo Frasconi:
From Margins to Probabilities in Multiclass Learning Problems.
ECAI 2002: 400-404 |
26 | | Savina Andonova,
André Elisseeff,
Theodoros Evgeniou,
Massimiliano Pontil:
A Simple Algorithm for Learning Stable Machines.
ECAI 2002: 513-517 |
25 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
Support Vector Machines with Clustering for Training with Very Large Datasets.
SETN 2002: 346-354 |
24 | EE | Chikahito Nakajima,
Massimiliano Pontil:
Maintenance Training of Electric Power Facilities Using Object Recognition by SVM.
SVM 2002: 112-119 |
23 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
Learning Preference Relations from Data.
WIRN 2002: 23-34 |
22 | EE | Massimiliano Pontil:
A Short Review of Statistical Learning Theory.
WIRN 2002: 233-242 |
2001 |
21 | EE | Yuan Yao,
Gian Luca Marcialis,
Massimiliano Pontil,
Paolo Frasconi,
Fabio Roli:
A New Machine Learning Approach to Fingerprint Classification.
AI*IA 2001: 57-63 |
20 | EE | Yuan Yao,
Paolo Frasconi,
Massimiliano Pontil:
Fingerprint Classification with Combinations of Support Vector Machines.
AVBPA 2001: 253-258 |
19 | EE | Bernd Heisele,
Thomas Serre,
Massimiliano Pontil,
Tomaso Poggio:
Component-based Face Detection.
CVPR (1) 2001: 657-662 |
18 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
Support Vector Machines: Theory and Applications.
Machine Learning and Its Applications 2001: 249-257 |
17 | EE | Bernd Heisele,
Thomas Serre,
Massimiliano Pontil,
Thomas Vetter,
Tomaso Poggio:
Categorization by Learning and Combining Object Parts.
NIPS 2001: 1239-1245 |
2000 |
16 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
A Note on the Generalization Performance of Kernel Classifiers with Margin.
ALT 2000: 306-315 |
15 | EE | Massimiliano Pontil,
Sayan Mukherjee,
Federico Girosi:
On the Noise Model of Support Vector Machines Regression.
ALT 2000: 316-324 |
14 | | Theodoros Evgeniou,
Luis Pérez-Breva,
Massimiliano Pontil,
Tomaso Poggio:
Bounds on the Generalization Performance of Kernel Machine Ensembles.
ICML 2000: 271-278 |
13 | EE | Chikahito Nakajima,
Norihiko Itoh,
Massimiliano Pontil,
Tomaso Poggio:
Object Recognition and Detection by a Combination of Support Vector Machine and Rotation Invariant Phase Only Correlation.
ICPR 2000: 4787-4790 |
12 | EE | Chikahito Nakajima,
Massimiliano Pontil,
Tomaso Poggio:
People Recognition and Pose Estimation in Image Sequences.
IJCNN (4) 2000: 189-196 |
11 | | Jason Weston,
Sayan Mukherjee,
Olivier Chapelle,
Massimiliano Pontil,
Tomaso Poggio,
Vladimir Vapnik:
Feature Selection for SVMs.
NIPS 2000: 668-674 |
10 | EE | Theodoros Evgeniou,
Massimiliano Pontil,
Tomaso Poggio:
Regularization Networks and Support Vector Machines.
Adv. Comput. Math. 13(1): 1-50 (2000) |
9 | | Theodoros Evgeniou,
Massimiliano Pontil,
Tomaso Poggio:
Statistical Learning Theory: A Primer.
International Journal of Computer Vision 38(1): 9-13 (2000) |
1999 |
8 | EE | Theodoros Evgeniou,
Massimiliano Pontil:
On the Vgamma Dimension for Regression in Reproducing Kernel Hilbert Spaces.
ATL 1999: 106-117 |
7 | EE | Ryan M. Rifkin,
Massimiliano Pontil,
Alessandro Verri:
A Note on Support Vector Machine Degeneracy.
ATL 1999: 252-263 |
6 | EE | Massimiliano Pontil,
Ryan M. Rifkin,
Theodoros Evgeniou:
From regression to classification in support vector machines.
ESANN 1999: 225-230 |
5 | EE | N. Barabino,
M. Pallavicini,
A. Petrolini,
Massimiliano Pontil,
Alessandro Verri:
Support vector machines vs multi-layer perceptrons in particle identification.
ESANN 1999: 257-262 |
1998 |
4 | EE | Massimiliano Pontil,
Stefano Rogai,
Alessandro Verri:
Recognizing 3-D Objects with Linear Support Vector Machines.
ECCV (2) 1998: 469-483 |
3 | EE | Massimiliano Pontil,
Alessandro Verri:
Support Vector Machines for 3D Object Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 20(6): 637-646 (1998) |
2 | | Massimiliano Pontil,
Alessandro Verri:
Properties of Support Vector Machines.
Neural Computation 10(4): 955-974 (1998) |
1997 |
1 | | Massimiliano Pontil,
Alessandro Verri:
Direct Aspect-Based 3D Object Recognition.
ICIAP (2) 1997: 300-307 |