2009 |
22 | EE | Geoff Fudenberg,
Liam Paninski:
Bayesian Image Recovery for Dendritic Structures Under Low Signal-to-Noise Conditions.
IEEE Transactions on Image Processing 18(3): 471-482 (2009) |
2008 |
21 | EE | Jeremy Lewi,
Robert J. Butera,
David M. Schneider,
Sarah M. N. Woolley,
Liam Paninski:
Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds.
NIPS 2008: 945-952 |
20 | EE | Liam Paninski:
A Coincidence-Based Test for Uniformity Given Very Sparsely Sampled Discrete Data.
IEEE Transactions on Information Theory 54(10): 4750-4755 (2008) |
19 | EE | Liam Paninski,
Masanao Yajima:
Undersmoothed Kernel Entropy Estimators.
IEEE Transactions on Information Theory 54(9): 4384-4388 (2008) |
18 | EE | Liam Paninski,
Adrian Haith,
Gabor Szirtes:
Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model.
Journal of Computational Neuroscience 24(1): 69-79 (2008) |
2006 |
17 | EE | Jeremy Lewi,
Robert J. Butera,
Liam Paninski:
Real-time adaptive information-theoretic optimization of neurophysiology experiments.
NIPS 2006: 857-864 |
16 | EE | Liam Paninski:
The most likely voltage path and large deviations approximations for integrate-and-fire neurons.
Journal of Computational Neuroscience 21(1): 71-87 (2006) |
15 | EE | Liam Paninski:
The Spike-Triggered Average of the Integrate-and-Fire Cell Driven by Gaussian White Noise.
Neural Computation 18(11): 2592-2616 (2006) |
2005 |
14 | EE | Misha Ahrens,
Quentin Huys,
Liam Paninski:
Large-scale biophysical parameter estimation in single neurons via constrained linear regression.
NIPS 2005 |
13 | EE | Liam Paninski:
Nonparametric inference of prior probabilities from Bayes-optimal behavior.
NIPS 2005 |
12 | EE | Liam Paninski:
Asymptotic Theory of Information-Theoretic Experimental Design.
Neural Computation 17(7): 1480-1507 (2005) |
11 | EE | Liam Paninski,
Jonathan Pillow,
Eero P. Simoncelli:
Comparing integrate-and-fire models estimated using intracellular and extracellular data.
Neurocomputing 65-66: 379-385 (2005) |
2004 |
10 | EE | Liam Paninski:
Log-concavity Results on Gaussian Process Methods for Supervised and Unsupervised Learning.
NIPS 2004 |
9 | EE | Liam Paninski:
Variational Minimax Estimation of Discrete Distributions under KL Loss.
NIPS 2004 |
8 | | Liam Paninski:
Estimating Entropy on m Bins Given Fewer than m Samples.
IEEE Transactions on Information Theory 50(9): 2200-2203 (2004) |
7 | EE | Liam Paninski,
Jonathan Pillow,
Eero P. Simoncelli:
Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model.
Neural Computation 16(12): 2533-2561 (2004) |
2003 |
6 | EE | Liam Paninski:
Design of Experiments via Information Theory.
NIPS 2003 |
5 | EE | Jonathan Pillow,
Liam Paninski,
Eero P. Simoncelli:
Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Model.
NIPS 2003 |
4 | EE | Mijail Serruya,
Nicholas G. Hatsopoulos,
Matthew Fellows,
Liam Paninski,
John Donoghue:
Robustness of neuroprosthetic decoding algorithms.
Biological Cybernetics 88(3): 219-228 (2003) |
3 | EE | Liam Paninski:
Estimation of Entropy and Mutual Information.
Neural Computation 15(6): 1191-1253 (2003) |
2002 |
2 | EE | Liam Paninski:
Convergence Properties of Some Spike-Triggered Analysis Techniques.
NIPS 2002: 173-180 |
2001 |
1 | EE | Liam Paninski,
Michael J. Hawken:
Stochastic optimal control and the human oculomotor system.
Neurocomputing 38-40: 1511-1517 (2001) |