2008 |
49 | EE | Jeff Kinne,
Dieter van Melkebeek:
Space Hierarchy Results for Randomized Models.
STACS 2008: 433-444 |
48 | EE | Dieter van Melkebeek,
Thomas Watson:
A Quantum Time-Space Lower Bound for the Counting Hierarchy.
Electronic Colloquium on Computational Complexity (ECCC) 15(017): (2008) |
2007 |
47 | EE | Dieter van Melkebeek,
Konstantin Pervyshev:
A Generic Time Hierarchy with One Bit of Advice.
Computational Complexity 16(2): 139-179 (2007) |
46 | EE | Dieter van Melkebeek:
A Survey of Lower Bounds for Satisfiability and Related Problems.
Electronic Colloquium on Computational Complexity (ECCC) 14(099): (2007) |
45 | EE | Jeff Kinne,
Dieter van Melkebeek:
Space Hierarchy Results for Randomized and Other Semantic Models.
Electronic Colloquium on Computational Complexity (ECCC) 14(134): (2007) |
2006 |
44 | | Matthias Krause,
Pavel Pudlák,
Rüdiger Reischuk,
Dieter van Melkebeek:
Complexity of Boolean Functions, 12.03. - 17.03.2006
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2006 |
43 | EE | Matthias Krause,
Pavel Pudlák,
Rüdiger Reischuk,
Dieter van Melkebeek:
06111 Abstracts Collection -- Complexity of Boolean Functions.
Complexity of Boolean Functions 2006 |
42 | EE | Matthias Krause,
Dieter van Melkebeek,
Pavel Pudlák,
Rüdiger Reischuk:
06111 Executive Summary -- Complexity of Boolean Functions.
Complexity of Boolean Functions 2006 |
41 | EE | Dieter van Melkebeek,
Konstantin Pervyshev:
A Generic Time Hierarchy for Semantic Models With One Bit of Advice.
Complexity of Boolean Functions 2006 |
40 | EE | Scott Diehl,
Dieter van Melkebeek:
Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines.
Complexity of Boolean Functions 2006 |
39 | EE | Dieter van Melkebeek,
Konstantin Pervyshev:
A Generic Time Hierarchy for Semantic Models with One Bit of Advice.
IEEE Conference on Computational Complexity 2006: 129-144 |
38 | EE | Dieter van Melkebeek:
A Survey of Lower Bounds for Satisfiability and Related Problems.
Foundations and Trends in Theoretical Computer Science 2(3): 197-303 (2006) |
37 | EE | Eric Allender,
Harry Buhrman,
Michal Koucký,
Dieter van Melkebeek,
Detlef Ronneburger:
Power from Random Strings.
SIAM J. Comput. 35(6): 1467-1493 (2006) |
36 | EE | Scott Diehl,
Dieter van Melkebeek:
Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines.
SIAM J. Comput. 36(3): 563-594 (2006) |
35 | EE | Luis Antunes,
Lance Fortnow,
Dieter van Melkebeek,
N. V. Vinodchandran:
Computational depth: Concept and applications.
Theor. Comput. Sci. 354(3): 391-404 (2006) |
34 | EE | Jin-yi Cai,
Venkatesan T. Chakaravarthy,
Dieter van Melkebeek:
Time-Space Tradeoff in Derandomizing Probabilistic Logspace.
Theory Comput. Syst. 39(1): 189-208 (2006) |
2005 |
33 | EE | Scott Diehl,
Dieter van Melkebeek:
Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines.
ICALP 2005: 982-993 |
32 | EE | Harry Buhrman,
Troy Lee,
Dieter van Melkebeek:
Language compression and pseudorandom generators.
Computational Complexity 14(3): 228-255 (2005) |
31 | EE | Dieter van Melkebeek,
Konstantin Pervyshev:
A Generic Time Hierarchy for Semantic Models With One Bit of Advice
Electronic Colloquium on Computational Complexity (ECCC)(111): (2005) |
30 | EE | Lance Fortnow,
Richard J. Lipton,
Dieter van Melkebeek,
Anastasios Viglas:
Time-space lower bounds for satisfiability.
J. ACM 52(6): 835-865 (2005) |
29 | EE | Dieter van Melkebeek,
Rahul Santhanam:
Holographic Proofs and Derandmization.
SIAM J. Comput. 35(1): 59-90 (2005) |
28 | EE | Dieter van Melkebeek,
Ran Raz:
A time lower bound for satisfiability.
Theor. Comput. Sci. 348(2-3): 311-320 (2005) |
2004 |
27 | EE | Dieter van Melkebeek,
Ran Raz:
A Time Lower Bound for Satisfiability.
ICALP 2004: 971-982 |
26 | EE | Harry Buhrman,
Troy Lee,
Dieter van Melkebeek:
Language Compression and Pseudorandom Generators.
IEEE Conference on Computational Complexity 2004: 15-28 |
25 | EE | Jin-yi Cai,
Venkatesan T. Chakaravarthy,
Dieter van Melkebeek:
Time-Space Tradeoff in Derandomizing Probabilistic Logspace.
STACS 2004: 571-583 |
24 | EE | Troy Lee,
Dieter van Melkebeek,
Harry Buhrman:
Language Compression and Pseudorandom Generators
Electronic Colloquium on Computational Complexity (ECCC)(002): (2004) |
2003 |
23 | EE | Rahul Santhanam,
Dieter van Melkebeek:
Holographic Proofs and Derandomization.
IEEE Conference on Computational Complexity 2003: 269-283 |
2002 |
22 | EE | Eric Allender,
Harry Buhrman,
Michal Koucký,
Dieter van Melkebeek,
Detlef Ronneburger:
Power from Random Strings.
FOCS 2002: 669-678 |
21 | EE | Thomas P. Hayes,
Samuel Kutin,
Dieter van Melkebeek:
The Quantum Black-Box Complexity of Majority.
Algorithmica 34(4): 480-501 (2002) |
20 | EE | Eric Allender,
Harry Buhrman,
Michal Koucký,
Detlef Ronneburger,
Dieter van Melkebeek:
Power from Random Strings
Electronic Colloquium on Computational Complexity (ECCC)(028): (2002) |
19 | EE | Adam Klivans,
Dieter van Melkebeek:
Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses.
SIAM J. Comput. 31(5): 1501-1526 (2002) |
2001 |
18 | EE | Luis Antunes,
Lance Fortnow,
Dieter van Melkebeek:
Computational Depth.
IEEE Conference on Computational Complexity 2001: 266-273 |
17 | | Dieter van Melkebeek:
The Computational Complexity Column Time-Space Lower Bounds for Satisfiability.
Bulletin of the EATCS 73: 57-77 (2001) |
2000 |
16 | | Dieter van Melkebeek:
Randomness and Completeness in Computational Complexity
Springer 2000 |
15 | EE | Lance Fortnow,
Dieter van Melkebeek:
Time-Space Tradeoffs for Nondeterministic Computation.
IEEE Conference on Computational Complexity 2000: 2-13 |
14 | EE | Harry Buhrman,
Stephen A. Fenner,
Lance Fortnow,
Dieter van Melkebeek:
Optimal Proof Systems and Sparse Sets.
STACS 2000: 407-418 |
13 | EE | Lance Fortnow,
Dieter van Melkebeek:
Time-Space Tradeoffs for Nondeterministic Computation
Electronic Colloquium on Computational Complexity (ECCC) 7(28): (2000) |
12 | | Harry Buhrman,
Lance Fortnow,
Dieter van Melkebeek,
Leen Torenvliet:
Separating Complexity Classes Using Autoreducibility.
SIAM J. Comput. 29(5): 1497-1520 (2000) |
11 | | Harry Buhrman,
Dieter van Melkebeek,
Kenneth W. Regan,
D. Sivakumar,
Martin Strauss:
A Generalization of Resource-Bounded Measure, with Application to the BPP vs. EXP Problem.
SIAM J. Comput. 30(2): 576-601 (2000) |
10 | EE | Dieter van Melkebeek:
The zero-one law holds for BPP.
Theor. Comput. Sci. 244(1-2): 283-288 (2000) |
1999 |
9 | EE | Adam Klivans,
Dieter van Melkebeek:
Graph Nonisomorphism has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses.
STOC 1999: 659-667 |
8 | | Harry Buhrman,
Dieter van Melkebeek:
Hard Sets Are Hard to Find.
J. Comput. Syst. Sci. 59(2): 327-345 (1999) |
1998 |
7 | EE | Harry Buhrman,
Dieter van Melkebeek:
Hard Sets are Hard to Find.
IEEE Conference on Computational Complexity 1998: 170-181 |
6 | | Harry Buhrman,
Dieter van Melkebeek,
Kenneth W. Regan,
D. Sivakumar,
Martin Strauss:
A Generalization of Resource-Bounded Measure, With an Application (Extended Abstract).
STACS 1998: 161-171 |
5 | EE | Harry Buhrman,
Dieter van Melkebeek,
Kenneth W. Regan,
Martin Strauss,
D. Sivakumar:
A Generalization of Resource-Bounded Measure, With Application to the BPP vs. EXP Problem
Electronic Colloquium on Computational Complexity (ECCC) 5(58): (1998) |
4 | EE | Adam Klivans,
Dieter van Melkebeek:
Graph Nonisomorphism has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses.
Electronic Colloquium on Computational Complexity (ECCC) 5(75): (1998) |
3 | | Dieter van Melkebeek:
Deterministic and Randomized Bounded Truth-Table Reductions of P, NL, and L to Sparse Sets.
J. Comput. Syst. Sci. 57(2): 213-232 (1998) |
1997 |
2 | | Dieter van Melkebeek,
Mitsunori Ogihara:
Sparse Hard Sets for P.
Advances in Algorithms, Languages, and Complexity 1997: 191-208 |
1996 |
1 | EE | Dieter van Melkebeek:
Reducing P to a Sparse Set using a Constant Number of Queries Collapses P to L.
IEEE Conference on Computational Complexity 1996: 88-96 |