1993 |
5 | EE | Jean Mayer:
Case 6 of hadwiger's conjecture. III. The problem of 7-vertices.
Discrete Mathematics 111(1-3): 381-387 (1993) |
1992 |
4 | EE | Jean Mayer:
Conjecture de Hadwiger: k = 6. II - réductions de sommets de degré 6 dans les graphes 6- chromatiques contraction-critiques.
Discrete Mathematics 101(1-3): 213-222 (1992) |
3 | EE | Oleg V. Borodin,
Jean Mayer:
Decomposition of K13 into a torus graph and a graph imbedded in the Klein bottle.
Discrete Mathematics 102(1): 97-98 (1992) |
1989 |
2 | EE | Jean Mayer:
Hadwiger's conjecture (k=6) : Neighbour configurations of 6-vertices in contraction- critical graphs.
Discrete Mathematics 74(1-2): 137-148 (1989) |
1979 |
1 | EE | Kenneth Appel,
Wolfgang Haken,
Jean Mayer:
Triangulation a v5 séparés dans le problème des quatre couleurs.
J. Comb. Theory, Ser. B 27(2): 130-150 (1979) |