1993 | ||
---|---|---|
5 | EE | Jean Mayer: Case 6 of hadwiger's conjecture. III. The problem of 7-vertices. Discrete Mathematics 111(1-3): 381-387 (1993) |
1992 | ||
4 | EE | Jean Mayer: Conjecture de Hadwiger: k = 6. II - réductions de sommets de degré 6 dans les graphes 6- chromatiques contraction-critiques. Discrete Mathematics 101(1-3): 213-222 (1992) |
3 | EE | Oleg V. Borodin, Jean Mayer: Decomposition of K13 into a torus graph and a graph imbedded in the Klein bottle. Discrete Mathematics 102(1): 97-98 (1992) |
1989 | ||
2 | EE | Jean Mayer: Hadwiger's conjecture (k=6) : Neighbour configurations of 6-vertices in contraction- critical graphs. Discrete Mathematics 74(1-2): 137-148 (1989) |
1979 | ||
1 | EE | Kenneth Appel, Wolfgang Haken, Jean Mayer: Triangulation a v5 séparés dans le problème des quatre couleurs. J. Comb. Theory, Ser. B 27(2): 130-150 (1979) |
1 | Kenneth Appel | [1] |
2 | Oleg V. Borodin | [3] |
3 | Wolfgang Haken | [1] |