| 2008 |
| 23 | EE | Ruy J. G. B. de Queiroz,
Angus Macintyre:
Logic, Language, Information and Computation.
Ann. Pure Appl. Logic 152(1-3): 1-2 (2008) |
| 22 | EE | Angus Macintyre:
Model theory of exponentials on Lie algebras.
Mathematical Structures in Computer Science 18(1): 189-204 (2008) |
| 2007 |
| 21 | EE | Paola D'Aquino,
Angus Macintyre:
Quadratic forms in models of IDelta0+Omega1. I.
Ann. Pure Appl. Logic 148(1-3): 31-48 (2007) |
| 2006 |
| 20 | EE | Ruy J. G. B. de Queiroz,
Angus Macintyre,
Guilherme Bittencourt:
Preface.
Electr. Notes Theor. Comput. Sci. 143: 1-4 (2006) |
| 2005 |
| 19 | EE | Andrew M. W. Glass,
Angus Macintyre,
Françoise Point:
Free abelian lattice-ordered groups.
Ann. Pure Appl. Logic 134(2-3): 265-283 (2005) |
| 2003 |
| 18 | EE | Angus Macintyre:
Model theory: Geometrical and set-theoretic aspects and prospects.
Bulletin of Symbolic Logic 9(2): 197-212 (2003) |
| 2001 |
| 17 | | Lou van den Dries,
Angus Macintyre,
David Marker:
Logarithmic-exponential series.
Ann. Pure Appl. Logic 111(1-2): 61-113 (2001) |
| 1997 |
| 16 | | Marek Karpinski,
Angus Macintyre:
Approximating the Volume of General Pfaffian Bodies.
Structures in Logic and Computer Science 1997: 162-173 |
| 15 | | Angus Macintyre:
Generic Automorphisms of Fields.
Ann. Pure Appl. Logic 88(2-3): 165-180 (1997) |
| 14 | | Marek Karpinski,
Angus Macintyre:
Polynomial Bounds for VC Dimension of Sigmoidal and General Pfaffian Neural Networks.
J. Comput. Syst. Sci. 54(1): 169-176 (1997) |
| 1995 |
| 13 | | Marek Karpinski,
Angus Macintyre:
Bounding VC-dimension of neural networks: Progress and prospects.
EuroCOLT 1995: 337-341 |
| 12 | EE | Marek Karpinski,
Angus Macintyre:
Polynomial bounds for VC dimension of sigmoidal neural networks.
STOC 1995: 200-208 |
| 11 | EE | Marek Karpinski,
Angus Macintyre:
VC Dimension of Sigmoidal and General Pfaffian Networks
Electronic Colloquium on Computational Complexity (ECCC) 2(55): (1995) |
| 1994 |
| 10 | EE | Marek Karpinski,
Angus Macintyre:
Polynomial Bounds for VC Dimension of Sigmoidal Neural Networks
Electronic Colloquium on Computational Complexity (ECCC) 1(24): (1994) |
| 1993 |
| 9 | EE | Angus Macintyre,
Eduardo D. Sontag:
Finiteness results for sigmoidal "neural" networks.
STOC 1993: 325-334 |
| 8 | | Philip Scowcroft,
Angus Macintyre:
On the Elimination of Imaginaries from Certain Valued Fields.
Ann. Pure Appl. Logic 61(3): 241-276 (1993) |
| 1991 |
| 7 | | Angus Macintyre:
Schanuel's Conjecture and Free Exponential Rings.
Ann. Pure Appl. Logic 51(3): 241-246 (1991) |
| 1990 |
| 6 | | Angus Macintyre:
Rationality of p-adic Poincaré Series: Uniformity in p.
Ann. Pure Appl. Logic 49(1): 31-74 (1990) |
| 1989 |
| 5 | | Angus Macintyre,
David Marker:
Primes and Their Residue Rings in Models of Open Induction.
Ann. Pure Appl. Logic 43(1): 57-77 (1989) |
| 1983 |
| 4 | | Angus Macintyre:
Decision Problems for Exponential Rings: The p-adic case.
FCT 1983: 285-289 |
| 1976 |
| 3 | | Angus Macintyre:
On Definable Subsets of p-Adic Fields.
J. Symb. Log. 41(3): 605-610 (1976) |
| 1973 |
| 2 | | Angus Macintyre:
The Word Problem for Division Rings.
J. Symb. Log. 38(3): 428-436 (1973) |
| 1972 |
| 1 | | Angus Macintyre:
Omitting Quantifier-Free Types in Generic Structures.
J. Symb. Log. 37(3): 512-520 (1972) |