2009 |
15 | EE | Shachar Lovett:
The density of weights of Generalized Reed--Muller codes
CoRR abs/0904.0811: (2009) |
2008 |
14 | EE | Tali Kaufman,
Shachar Lovett:
Worst Case to Average Case Reductions for Polynomials.
FOCS 2008: 166-175 |
13 | EE | Shachar Lovett:
Lower bounds for adaptive linearity tests.
STACS 2008: 515-526 |
12 | EE | Shachar Lovett,
Roy Meshulam,
Alex Samorodnitsky:
Inverse conjecture for the gowers norm is false.
STOC 2008: 547-556 |
11 | EE | Shachar Lovett:
Unconditional pseudorandom generators for low degree polynomials.
STOC 2008: 557-562 |
10 | EE | Shachar Lovett:
Lower bounds for adaptive linearity tests
CoRR abs/0802.2857: (2008) |
9 | EE | Tali Kaufman,
Shachar Lovett:
The List-Decoding Size of Reed-Muller Codes
CoRR abs/0811.2356: (2008) |
8 | EE | Shachar Lovett,
Tali Kaufman:
Worst case to Average case reductions for polynomials.
Electronic Colloquium on Computational Complexity (ECCC) 15(072): (2008) |
7 | EE | Ido Ben-Eliezer,
Rani Hod,
Shachar Lovett:
Random low degree polynomials are hard to approximate.
Electronic Colloquium on Computational Complexity (ECCC) 15(080): (2008) |
6 | EE | Shachar Lovett,
Tali Kaufman:
The List-Decoding Size of Reed-Muller Codes.
Electronic Colloquium on Computational Complexity (ECCC) 15(111): (2008) |
2007 |
5 | EE | Shachar Lovett,
Sasha Sodin:
Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits
CoRR abs/math/0701102: (2007) |
4 | EE | Shachar Lovett,
Sasha Sodin:
Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits.
Electronic Colloquium on Computational Complexity (ECCC) 14(012): (2007) |
3 | EE | Shachar Lovett:
Unconditional pseudorandom generators for low degree polynomials.
Electronic Colloquium on Computational Complexity (ECCC) 14(075): (2007) |
2 | EE | Shachar Lovett:
Tight lower bounds for adaptive linearity tests.
Electronic Colloquium on Computational Complexity (ECCC) 14(090): (2007) |
1 | EE | Shachar Lovett,
Roy Meshulam,
Alex Samorodnitsky:
Inverse Conjecture for the Gowers norm is false.
Electronic Colloquium on Computational Complexity (ECCC) 14(123): (2007) |