| 2008 |
| 27 | EE | T. Yung Kong:
Minimal non-deletable sets and minimal non-codeletable sets in binary images.
Theor. Comput. Sci. 406(1-2): 97-118 (2008) |
| 2007 |
| 26 | EE | T. Yung Kong,
Punam K. Saha,
Azriel Rosenfeld:
Strongly normal sets of contractible tiles in N dimensions.
Pattern Recognition 40(2): 530-543 (2007) |
| 2006 |
| 25 | EE | T. Yung Kong:
Minimal Non-simple and Minimal Non-cosimple Sets in Binary Images on Cell Complexes.
DGCI 2006: 169-188 |
| 24 | EE | Deniz Sarioz,
T. Yung Kong,
Gabor T. Herman:
History Trees as Descriptors of Macromolecular Structures.
ISVC (1) 2006: 263-272 |
| 2005 |
| 23 | EE | Bruno M. Carvalho,
Gabor T. Herman,
T. Yung Kong:
Simultaneous fuzzy segmentation of multiple objects.
Discrete Applied Mathematics 151(1-3): 55-77 (2005) |
| 2004 |
| 22 | EE | T. Yung Kong,
Chyi-Jou Gau:
Minimal Non-simple Sets in 4-Dimensional Binary Images with (8, 80)-Adjacency.
IWCIA 2004: 318-333 |
| 21 | EE | Sébastien Fourey,
Gabor T. Herman,
T. Yung Kong,
Azriel Rosenfeld:
Preface.
Discrete Applied Mathematics 139(1-3): 1-3 (2004) |
| 20 | EE | Sébastien Fourey,
T. Yung Kong,
Gabor T. Herman:
Generic axiomatized digital surface-structures.
Discrete Applied Mathematics 139(1-3): 65-93 (2004) |
| 2003 |
| 19 | EE | Bruno M. Carvalho,
Gabor T. Herman,
T. Yung Kong:
Simultaneous Fuzzy Segmentation of Multiple Objects.
Electronic Notes in Discrete Mathematics 12: 3-22 (2003) |
| 18 | EE | Chyi-Jou Gau,
T. Yung Kong:
Minimal non-simple sets in 4D binary images.
Graphical Models 65(1-3): 112-130 (2003) |
| 17 | EE | T. Yung Kong:
The Khalimsky topologies are precisely those simply connected topologies on Zn whose connected sets include all 2n-connected sets but no (3n-1)-disconnected sets.
Theor. Comput. Sci. 305(1-3): 221-235 (2003) |
| 2002 |
| 16 | EE | Chyi-Jou Gau,
T. Yung Kong:
4D Minimal Non-simple Sets.
DGCI 2002: 81-91 |
| 15 | EE | T. Yung Kong:
Topological adjacency relations on Zn.
Theor. Comput. Sci. 283(1): 3-28 (2002) |
| 2001 |
| 14 | EE | Sébastien Fourey,
T. Yung Kong,
Gabor T. Herman:
Generic axiomatized digital surface-structures.
Electr. Notes Theor. Comput. Sci. 46: (2001) |
| 13 | EE | Sébastien Fourey,
Gabor T. Herman,
T. Yung Kong:
Preface.
Electr. Notes Theor. Comput. Sci. 46: (2001) |
| 12 | EE | Punam K. Saha,
T. Yung Kong,
Azriel Rosenfeld:
Strongly normal sets of tiles in N dimensions.
Electr. Notes Theor. Comput. Sci. 46: (2001) |
| 1999 |
| 11 | | Chyi-Jou Gau,
T. Yung Kong:
Minimal Nonsimple Sets of Voxels in Binary Images on A Face-Centered Cubic Grid.
IJPRAI 13(4): 485-502 (1999) |
| 1998 |
| 10 | | Azriel Rosenfeld,
T. Yung Kong,
Akira Nakamura:
Topology-Preserving Deformations of Two-Valued Digital Pictures.
Graphical Models and Image Processing 60(1): 24-34 (1998) |
| 1997 |
| 9 | | T. Yung Kong:
Topology-Preserving Deletion of 1's from 2-, 3- and 4-Dimensional Binary Images.
DGCI 1997: 3-18 |
| 1995 |
| 8 | | T. Yung Kong:
On Topology Preservation in 2-D and 3-D Thinning.
IJPRAI 9(5): 813-844 (1995) |
| 1992 |
| 7 | EE | T. Yung Kong,
Jayaram K. Udupa:
A justification of a fast surface tracking algorithm.
CVGIP: Graphical Model and Image Processing 54(2): 162-170 (1992) |
| 1991 |
| 6 | EE | Azriel Rosenfeld,
T. Yung Kong,
Angela Y. Wu:
Digital surfaces.
CVGIP: Graphical Model and Image Processing 53(4): 305-312 (1991) |
| 1990 |
| 5 | EE | T. Yung Kong,
Azriel Rosenfeld:
If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable.
Pattern Recognition Letters 11(4): 231-232 (1990) |
| 1989 |
| 4 | EE | T. Yung Kong,
Azriel Rosenfeld:
Digital topology: Introduction and survey.
Computer Vision, Graphics, and Image Processing 48(3): 357-393 (1989) |
| 3 | EE | T. Yung Kong:
A digital fundamental group.
Computers & Graphics 13(2): 159-166 (1989) |
| 1988 |
| 2 | | T. Yung Kong,
David M. Mount,
A. W. Roscoe:
The Decomposition of a Rectangle into Rectangles of Minimal Perimeter.
SIAM J. Comput. 17(6): 1215-1231 (1988) |
| 1986 |
| 1 | | Michael Werman,
Shmuel Peleg,
Robert Melter,
T. Yung Kong:
Bipartite Graph Matching for Points on a Line or a Circle.
J. Algorithms 7(2): 277-284 (1986) |