dblp.uni-trier.dewww.uni-trier.de

Noboru Hamada

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2000
19 Noboru Hamada, Tor Helleseth, Halvard Martinsen, Øyvind Ytrehus: There is no ternary [28, 6, 16] code. IEEE Transactions on Information Theory 46(4): 1550-1554 (2000)
1999
18 Noboru Hamada: The Nonexistence of Quaternary Linear Codes With Parameters [243, 5, 181], [248, 5, 185] and [240, 5, 179]. Ars Comb. 51: (1999)
1998
17 Noboru Hamada: The Nonexistence of Ternary [231, 6, 153] Codes. Ars Comb. 50: (1998)
16 Noboru Hamada, Marijn van Eupen: The Nonexistence of Ternary [38, 6, 23] Codes. Des. Codes Cryptography 13(2): 165-172 (1998)
1997
15 Noboru Hamada: A Necessary and Sufficient Condition for the Existence of Some Ternary [n, k, d] Codes Meeting the Greismer Bound. Des. Codes Cryptography 10(1): 41-56 (1997)
1996
14 Marijn van Eupen, Noboru Hamada, Yoko Watamori: The Nonexistence of Ternary [50, 5, 32] Codes. Des. Codes Cryptography 7(3): 235-237 (1996)
1995
13EENoboru Hamada, Tor Helleseth: A characterization of some {3vµ+1, 3vµ; k-1, q}-minihypers and some [n, k, qk-1 - 3qµ; q]-codes (k >= 3, q >= 5, 1 <= µ < k-1) meeting the Griesmer bound. Discrete Mathematics 146(1-3): 59-67 (1995)
1993
12EENoboru Hamada, Tor Helleseth, Øyvind Ytrehus: A New Class of Nonbinary Codes Meeting the Griesmer Bound. Discrete Applied Mathematics 47(3): 219-226 (1993)
11EENoboru Hamada, Tor Helleseth, Øyvind Ytrehus: Characterization of {2(q+1)+2, 2;t, q}-minihypers in PG(t, q) (t>=3, qepsilon{3, 4}). Discrete Mathematics 115(1-3): 175-185 (1993)
10EENoboru Hamada: A characterization of some [n, k, d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Mathematics 116(1-3): 229-268 (1993)
1992
9 Noboru Hamada, Tor Helleseth, Øyvind Ytrehus: On the Construction of [q4 + q2 - q, 5, q4 - q3 + q2 - 2q; q]-Codes Meeting the Griesmer Bound. Des. Codes Cryptography 2(3): 225-229 (1992)
8EENoboru Hamada, Tor Helleseth: A characterization of some {2ualpha+1+ugamma+1, 2ualpha+ugamma; k-1, 3}- minihypers and some (n, k, 3k-1 -2·3alpha-3gamma; 3)-codes (k>=3, 0<=alpha<gamma<k-1) meeting the Griesmer bound. Discrete Mathematics 104(1): 67-81 (1992)
1991
7EENoboru Hamada, Michel Deza: A characterization of {2valpha+1 + 2vbeta+1, 2valpha + 2vbeta; t, q}- minihypers in PG(t, q) (t >= 2, q >= 5 and 0 >= alpha < beta < t) and its applications to error-correcting codes. Discrete Mathematics 93(1): 19-33 (1991)
1989
6EENoboru Hamada, Michel Deza: A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min·hyper in a finite projective geometry. Discrete Mathematics 77(1-3): 75-87 (1989)
1988
5EENoboru Hamada, Michel Deza: Characterization of {2(q+1)+2, 2;t, q}- min·hypers in PG(t, q) (t>=3, q>=5) and its applications to error-correcting codes. Discrete Mathematics 71(3): 219-231 (1988)
1981
4 Noboru Hamada: The Geometric Structure and the p-Rank of an Affine Triple System Derived from a Nonassociative Moufang Loop with the Maximum Associative Center. J. Comb. Theory, Ser. A 30(3): 285-297 (1981)
1978
3 Noboru Hamada, Yasuyuki Kobayashi: On the Block Structure of BIB Designs with Parameters v = 22, b = 33, r = 12, k = 8, and lambda = 4. J. Comb. Theory, Ser. A 24(1): 75-83 (1978)
2 Noboru Hamada: On a Geometrical Method of Construction of Maximal t-Linearly Independent Sets. J. Comb. Theory, Ser. A 25(1): 14-28 (1978)
1975
1 Sumiyasu Yamamoto, Hideto Ikeda, Shinsei Shige-eda, Kazuhiko Ushio, Noboru Hamada: Design of a New Balanced File Organization Scheme With the Least Redundancy Information and Control 28(2): 156-175 (1975)

Coauthor Index

1Michel Deza [5] [6] [7]
2Marijn van Eupen [14] [16]
3Tor Helleseth [8] [9] [11] [12] [13] [19]
4Hideto Ikeda [1]
5Yasuyuki Kobayashi [3]
6Halvard Martinsen [19]
7Shinsei Shige-eda [1]
8Kazuhiko Ushio [1]
9Yoko Watamori [14]
10Sumiyasu Yamamoto [1]
11Øyvind Ytrehus [9] [11] [12] [19]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)