2000 |
19 | | Noboru Hamada,
Tor Helleseth,
Halvard Martinsen,
Øyvind Ytrehus:
There is no ternary [28, 6, 16] code.
IEEE Transactions on Information Theory 46(4): 1550-1554 (2000) |
1999 |
18 | | Noboru Hamada:
The Nonexistence of Quaternary Linear Codes With Parameters [243, 5, 181], [248, 5, 185] and [240, 5, 179].
Ars Comb. 51: (1999) |
1998 |
17 | | Noboru Hamada:
The Nonexistence of Ternary [231, 6, 153] Codes.
Ars Comb. 50: (1998) |
16 | | Noboru Hamada,
Marijn van Eupen:
The Nonexistence of Ternary [38, 6, 23] Codes.
Des. Codes Cryptography 13(2): 165-172 (1998) |
1997 |
15 | | Noboru Hamada:
A Necessary and Sufficient Condition for the Existence of Some Ternary [n, k, d] Codes Meeting the Greismer Bound.
Des. Codes Cryptography 10(1): 41-56 (1997) |
1996 |
14 | | Marijn van Eupen,
Noboru Hamada,
Yoko Watamori:
The Nonexistence of Ternary [50, 5, 32] Codes.
Des. Codes Cryptography 7(3): 235-237 (1996) |
1995 |
13 | EE | Noboru Hamada,
Tor Helleseth:
A characterization of some {3vµ+1, 3vµ; k-1, q}-minihypers and some [n, k, qk-1 - 3qµ; q]-codes (k >= 3, q >= 5, 1 <= µ < k-1) meeting the Griesmer bound.
Discrete Mathematics 146(1-3): 59-67 (1995) |
1993 |
12 | EE | Noboru Hamada,
Tor Helleseth,
Øyvind Ytrehus:
A New Class of Nonbinary Codes Meeting the Griesmer Bound.
Discrete Applied Mathematics 47(3): 219-226 (1993) |
11 | EE | Noboru Hamada,
Tor Helleseth,
Øyvind Ytrehus:
Characterization of {2(q+1)+2, 2;t, q}-minihypers in PG(t, q) (t>=3, qepsilon{3, 4}).
Discrete Mathematics 115(1-3): 175-185 (1993) |
10 | EE | Noboru Hamada:
A characterization of some [n, k, d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry.
Discrete Mathematics 116(1-3): 229-268 (1993) |
1992 |
9 | | Noboru Hamada,
Tor Helleseth,
Øyvind Ytrehus:
On the Construction of [q4 + q2 - q, 5, q4 - q3 + q2 - 2q; q]-Codes Meeting the Griesmer Bound.
Des. Codes Cryptography 2(3): 225-229 (1992) |
8 | EE | Noboru Hamada,
Tor Helleseth:
A characterization of some {2ualpha+1+ugamma+1, 2ualpha+ugamma; k-1, 3}- minihypers and some (n, k, 3k-1 -2·3alpha-3gamma; 3)-codes (k>=3, 0<=alpha<gamma<k-1) meeting the Griesmer bound.
Discrete Mathematics 104(1): 67-81 (1992) |
1991 |
7 | EE | Noboru Hamada,
Michel Deza:
A characterization of {2valpha+1 + 2vbeta+1, 2valpha + 2vbeta; t, q}- minihypers in PG(t, q) (t >= 2, q >= 5 and 0 >= alpha < beta < t) and its applications to error-correcting codes.
Discrete Mathematics 93(1): 19-33 (1991) |
1989 |
6 | EE | Noboru Hamada,
Michel Deza:
A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min·hyper in a finite projective geometry.
Discrete Mathematics 77(1-3): 75-87 (1989) |
1988 |
5 | EE | Noboru Hamada,
Michel Deza:
Characterization of {2(q+1)+2, 2;t, q}- min·hypers in PG(t, q) (t>=3, q>=5) and its applications to error-correcting codes.
Discrete Mathematics 71(3): 219-231 (1988) |
1981 |
4 | | Noboru Hamada:
The Geometric Structure and the p-Rank of an Affine Triple System Derived from a Nonassociative Moufang Loop with the Maximum Associative Center.
J. Comb. Theory, Ser. A 30(3): 285-297 (1981) |
1978 |
3 | | Noboru Hamada,
Yasuyuki Kobayashi:
On the Block Structure of BIB Designs with Parameters v = 22, b = 33, r = 12, k = 8, and lambda = 4.
J. Comb. Theory, Ser. A 24(1): 75-83 (1978) |
2 | | Noboru Hamada:
On a Geometrical Method of Construction of Maximal t-Linearly Independent Sets.
J. Comb. Theory, Ser. A 25(1): 14-28 (1978) |
1975 |
1 | | Sumiyasu Yamamoto,
Hideto Ikeda,
Shinsei Shige-eda,
Kazuhiko Ushio,
Noboru Hamada:
Design of a New Balanced File Organization Scheme With the Least Redundancy
Information and Control 28(2): 156-175 (1975) |