Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008 | ||
---|---|---|

12 | EE | Alexandre Belloni, Robert M. Freund: On the symmetry function of a convex set. Math. Program. 111(1-2): 57-93 (2008) |

2007 | ||

11 | EE | Alexandre Belloni, Robert M. Freund, Santosh Vempala: An Efficient Re-scaled Perceptron Algorithm for Conic Systems. COLT 2007: 393-408 |

10 | EE | Robert M. Freund, Fernando Ordóñez, Kim-Chuan Toh: Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. Math. Program. 109(2-3): 445-475 (2007) |

2006 | ||

9 | EE | Robert M. Freund: On the behavior of the homogeneous self-dual model for conic convex optimization. Math. Program. 106(3): 527-545 (2006) |

2004 | ||

8 | EE | Robert M. Freund: Complexity of convex optimization using geometry-based measures and a reference point. Math. Program. 99(2): 197-221 (2004) |

2003 | ||

7 | EE | Robert M. Freund, Jorge R. Vera: On the Complexity of Computing Estimates of Condition Measures of a Conic Linear System. Math. Oper. Res. 28(4): 625-648 (2003) |

1998 | ||

6 | Manuel A. Nunez, Robert M. Freund: Condition measures and properties of the central trajectory of a linear program. Math. Program. 83: 1-28 (1998) | |

1993 | ||

5 | Robert M. Freund: Projective transformations for interior-point algorithms, and a superlinearly convergent algorithm for the w-center problem. Math. Program. 58: 385-414 (1993) | |

1991 | ||

4 | Robert M. Freund: Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function. Math. Program. 51: 203-222 (1991) | |

3 | Robert M. Freund: A potential-function reduction algorithm for solving a linear program directly from an infeasible "warm start". Math. Program. 52: 441-466 (1991) | |

1989 | ||

2 | EE | Robert M. Freund: Combinatorial analogs of Brouwer's fixed-point theorem on a bounded polyhedron. J. Comb. Theory, Ser. B 47(2): 192-219 (1989) |

1981 | ||

1 | Robert M. Freund, Michael J. Todd: A Constructive Proof of Tucker's Combinatorial Lemma. J. Comb. Theory, Ser. A 30(3): 321-325 (1981) |

1 | Alexandre Belloni | [11] [12] |

2 | Manuel A. Nunez | [6] |

3 | Fernando Ordóñez | [10] |

4 | Michael J. Todd | [1] |

5 | Kim-Chuan Toh | [10] |

6 | Santosh Vempala | [11] |

7 | Jorge R. Vera | [7] |