2007 |
12 | EE | Rigoberto Flórez,
David Forge:
Minimal non-orientable matroids in a projective plane.
J. Comb. Theory, Ser. A 114(1): 175-183 (2007) |
11 | EE | David Forge,
Thomas Zaslavsky:
Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements.
J. Comb. Theory, Ser. A 114(1): 97-109 (2007) |
2004 |
10 | EE | Raul Cordovil,
David Forge,
Sulamita Klein:
How is a chordal graph like a supersolvable binary matroid?
Discrete Mathematics 288(1-3): 167-172 (2004) |
2003 |
9 | EE | Raul Cordovil,
David Forge:
A note on Tutte polynomials and Orlik-Solomon algebras.
Eur. J. Comb. 24(8): 1081-1087 (2003) |
2002 |
8 | EE | David Forge,
Jorge L. Ramírez Alfonsín,
H. Yeun:
Disconnected coverings for oriented matroids via simultaneous mutations.
Discrete Mathematics 258(1-3): 353-359 (2002) |
7 | EE | David Forge:
Bases in Orlik-Solomon Type Algebras.
Eur. J. Comb. 23(5): 567-572 (2002) |
2001 |
6 | EE | David Forge,
Jorge L. Ramírez Alfonsín:
On reconstructing arrangements from their sets of simplices.
Discrete Mathematics 226(1-3): 175-190 (2001) |
5 | EE | David Forge,
Jorge L. Ramírez Alfonsín:
On Counting the k-face Cells of Cyclic Arrangements.
Eur. J. Comb. 22(3): 307-312 (2001) |
4 | EE | David Forge,
Michel Las Vergnas:
Orlik-Solomon Type Algebras.
Eur. J. Comb. 22(5): 699-704 (2001) |
3 | EE | David Forge,
Michel Las Vergnas,
Peter Schuchert:
10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a Convex Polytope.
Eur. J. Comb. 22(5): 705-708 (2001) |
1998 |
2 | EE | David Forge,
Jorge L. Ramírez Alfonsín:
Straight Line Arrangements in the Real Projective Plane.
Discrete & Computational Geometry 20(2): 155-161 (1998) |
1 | EE | David Forge,
Jorge L. Ramírez Alfonsín:
Connected coverings and an application to oriented matroids.
Discrete Mathematics 187(1-3): 109-121 (1998) |