2009 |
18 | EE | Adil M. Bagirov,
Gleb Beliakov:
Global Optimization: Cutting Angle Method.
Encyclopedia of Optimization 2009: 1304-1311 |
17 | EE | Adil M. Bagirov:
Nonsmooth Optimization Approach to Clustering.
Encyclopedia of Optimization 2009: 2664-2671 |
16 | EE | Adil M. Bagirov:
Continuous Approximations to Subdifferentials.
Encyclopedia of Optimization 2009: 475-482 |
15 | EE | Adil M. Bagirov:
Derivative-Free Methods for Non-smooth Optimization.
Encyclopedia of Optimization 2009: 648-655 |
14 | EE | Adil M. Bagirov,
Conny Clausen,
Michael Kohler:
Estimation of a Regression Function by Maxima of Minima of Linear Functions.
IEEE Transactions on Information Theory 55(2): 833-845 (2009) |
2008 |
13 | EE | Adil M. Bagirov:
Modified global k.
Pattern Recognition 41(10): 3192-3199 (2008) |
2007 |
12 | EE | Sol Hart,
John Yearwood,
Adil M. Bagirov:
Visual Tools for Analysing Evolution, Emergence, and Error in Data Streams.
ACIS-ICIS 2007: 987-992 |
2006 |
11 | EE | Ranadhir Ghosh,
Moumita Ghosh,
Adil M. Bagirov:
Derivative Free Stochastic Discrete Gradient Method with Adaptive Mutation.
Industrial Conference on Data Mining 2006: 264-278 |
10 | EE | Adil M. Bagirov,
John Yearwood:
A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems.
European Journal of Operational Research 170(2): 578-596 (2006) |
9 | EE | Ranadhir Ghosh,
John Yearwood,
Moumita Ghosh,
Adil M. Bagirov:
A Hybrid Neural Learning Algorithm Using Evolutionary Learning and Derivative Free Local Search Method.
Int. J. Neural Syst. 16(3): 201-214 (2006) |
2005 |
8 | | Ranadhir Ghosh,
John Yearwood,
Moumita Ghosh,
Adil M. Bagirov:
Fusion Strategies for Neural Learning Algorithms using Evolutionary and Discrete Gradient Approaches.
Artificial Intelligence and Applications 2005: 761-766 |
7 | EE | Ranadhir Ghosh,
Moumita Ghosh,
John Yearwood,
Adil M. Bagirov:
Comparative Analysis of Genetic Algorithm, Simulated Annealing and Cutting Angle Method for Artificial Neural Networks.
MLDM 2005: 62-70 |
6 | EE | Ranadhir Ghosh,
Moumita Ghosh,
John Yearwood,
Adil M. Bagirov:
Determining Regularization Parameters for Derivative Free Neural Learning.
MLDM 2005: 71-79 |
2004 |
5 | EE | Leonid Churilov,
Adil M. Bagirov,
D. Schwartz,
Kate A. Smith,
M. Dally:
Improving Risk Grouping Rules for Prostate Cancer Patients with Optimization.
HICSS 2004 |
2003 |
4 | EE | Adil M. Bagirov,
Leonid Churilov:
An Optimization-Based Approach to Patient Grouping for Acute Healthcare in Australia.
International Conference on Computational Science 2003: 20-29 |
3 | EE | Gleb Beliakov,
J. E. Monsalve Tobon,
Adil M. Bagirov:
Parallelization of the Discrete Gradient Method of Non-smooth Optimization and Its Applications.
International Conference on Computational Science 2003: 592-601 |
2 | | Adil M. Bagirov,
Brent Ferguson,
Sasha Ivkovic,
G. Saunders,
John Yearwood:
New algorithms for multi-class cancer diagnosis using tumor gene expression signatures.
Bioinformatics 19(14): 1800-1807 (2003) |
2001 |
1 | EE | Adil M. Bagirov,
Alex Rubinov,
John Yearwood,
Andrew Stranieri:
A Global Optimization Approach to Classification in Medical Diagnosis and Prognosis.
HICSS 2001 |