Digital Symposium Collection 2000  

 
 
 
 
 
 

 





















Finding Intensional Knowledge of Distance-Based Outliers

Edwin M. Knorr and Raymond T. Ng

  View Paper (PDF)  

Return to Data Mining & Pattern Extraction

Abstract
Existing studies on outliers focus only on the identification aspect; none provides any intensional knowledge of the outliers - by which we mean a description or an explanation of why an identified outlier is exceptional. For many applications, a description or explanation is at least as vital to the user as the identification aspect. Specifically, intensional knowledge helps the user to: (i) evaluate the validity of the identified outliers, and (ii) improve one's understanding of the data.

The two main issues addresses in this paper are: what kinds of intensional knowledge to provide, and how to optimize the computation of such knowledge. With respect to the first issue, we propose finding strongest and weak outliers and their corresponding structural intensional knowledge. With respect to the second issue, we first present a naive and a semi-naive algorithm. Then, by means of what we call path and semi-lattice sharing of I/O processing, we develop two optimized approaches. We provide analytic results on their I/O performance, and present experimental results showing significant reductions in I/O and significant speedups in overall runtime.


References

Note: References link to DBLP on the Web.

[AGGR98]
Rakesh Agrawal , Johannes Gehrke , Dimitrios Gunopulos , Prabhakar Raghavan : Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. SIGMOD Conference 1998 : 94-105
[AGI+92]
Rakesh Agrawal , Sakti P. Ghosh , Tomasz Imielinski , Balakrishna R. Iyer , Arun N. Swami : An Interval Classifier for Database Mining Applications. VLDB 1992 : 560-573
[AIS93]
Rakesh Agrawal , Tomasz Imielinski , Arun N. Swami : Mining Association Rules between Sets of Items in Large Databases. SIGMOD Conference 1993 : 207-216
[BL94]
...
[BFOS84]
...
[BMS97]
Sergey Brin , Rajeev Motwani , Craig Silverstein : Beyond Market Baskets: Generalizing Association Rules to Correlations. SIGMOD Conference 1997 : 265-276
[HKPT98]
Ykä Huhtala , Juha Kärkkäinen , Pasi Porkka , Hannu Toivonen : Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE 1998 : 392-401
[JKN98]
Theodore Johnson , Ivy Kwok , Raymond T. Ng : Fast Computation of 2-Dimensional Depth Contours. KDD 1998 : 224-228
[KR90]
...
[KR98]
Edwin M. Knorr , Raymond T. Ng : Algorithms for Mining Distance-Based Outliers in Large Datasets. VLDB 1998 : 392-403
[KN99]
...
[NLHP98]
Raymond T. Ng , Laks V. S. Lakshmanan , Jiawei Han , Alex Pang : Exploratory Mining and Pruning Optimizations of Constrained Association Rules. SIGMOD Conference 1998 : 13-24
[RR96]
...
[SBMU98]
Craig Silverstein , Sergey Brin , Rajeev Motwani , Jeffrey D. Ullman : Scalable Techniques for Mining Causal Structures. VLDB 1998 : 594-605
[TN98]
...
[Tuk77]
...

BIBTEX

@inproceedings{DBLP:conf/vldb/KnorrN99,
  author    = {Edwin M. Knorr and
                Raymond T. Ng},
   editor    = {Malcolm P. Atkinson and
                Maria E. Orlowska and
                Patrick Valduriez and
                Stanley B. Zdonik and
                Michael L. Brodie},
   title     = {Finding Intensional Knowledge of Distance-Based Outliers},
   booktitle = {VLDB'99, Proceedings of 25th International Conference on Very
                Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
                UK},
   publisher = {Morgan Kaufmann},
   year      = {1999},
   isbn      = {1-55860-615-5},
   pages     = {211-222},
   crossref  = {DBLP:conf/vldb/99},
   bibsource = {DBLP, http://dblp.uni-trier.de} } },


























Copyright(C) 2000 ACM