
Scalable Sweeping-Based Spatial Join

Lars Arge* Octavian Procopiuc+ Sridhar Ramaswamyt
Torsten Sue1 5

Abstract

In this paper, we consider the filter step of the
spatial join problem, for the case where neither
of the inputs are indexed. We present a new al-
gorithm, Scalable Sweeping-Based Spatial Join
(SSSJ), that achieves both efficiency on real-life
data and robustness against highly skewed and
worst-case data sets. The algorithm combines
a method with theoretically optimal bounds on
I/O transfers based on the recently proposed
distribution-sweeping technique with a highly
optimized implementation of internal-memory
plane-sweeping. We present experimental re-
sults based on an efficient implementation of the
SSSJ algorithm, and compare it to the state-of-
the-art Partition-Based Spatial-Merge (PBSM)
algorithm of Pate1 and Dewitt.

*Center for Geometric Computing, Department of Computer Sci-
ence, Duke University, Durham, NC 27708-0129. Supported in part
by U.S. Army Research Office grant DAAH04-96-I-0013. Email:
large@cs . duke. edu.

t Center for Geometric Computing, Department of Computer Sci-
ence, Duke University, Durham, NC 27708-0129. Supported in part
by the U.S. Army Research Office under grant DAAHO&96-l-0013
and by the National Science Foundation under grant CCR-9522047.
Email: tavi@cs.duke.edu.

t Information Sciences Research Center, Bell Laboratories, 600
Mountain Avenue, Box 636, Murray Hill, NJ 07974-0636. Email:
sridhar@research.bell-labs.com.

An extremely important problem on spatial data is the
spatialjoin, where two spatial relations are combined to-
gether based on some spatial criteria. A typical use for
the spatial join is the map overlay operation that com-
bines two maps of different types of objects. For exam-
ple, the query “find all forests in the United States that
receive more than 20 inches of average rainfall per year”
can be answered by combining the information in a land-
cover map with the information in a rainfall map.

Spatial objects can be quite large to represent. For ex-
ample, representing a lake with an island in its middle
as a non-convex polygon may require many hundreds,
if not thousands, of vertices. Since manipulating such
large objects can be cumbersome, it is customary in spa-
tial database systems to approximate spatial objects and
manipulate the approximations as much as possible. One
technique is to bound each spatial object by the smallest
axis-parallel rectangle that completely contains it. This
rectangle is referred to as the spatial object’s minimum
bounding rectangle (MBR). Spatial operations can then
be performed in two steps [Ore90]:

5 Information Sciences Research Center, Bell Laboratories, 600
Mountain Avenue, Box 636, Murray Hill, NJ 079740636. Email:
suel@research.bell-labs.com.

BCenter for Geometric Computing, Department of Computer Sci-
ence, Duke University, Durham, NC 27708-0129. Supported in part by
the U.S. Army Research Office under grant DAAH04-961-0013 and
by the National Science Foundation under grant CCR-9522047. Part
of this work was done while visiting Bell Laboratories, Murray Hill,
NJ. Email: j sv@cs . duke. edu.

Permission to copy without ,fee ull or part qf this material is granted
provided that the copies are not made or distributed.for direct commer-
cial advantage, the VLDB copyright notice and the title qf the pub-
lication and its date appear, and notice is given that copying is by
permission qf the Very L.arge Data Base Endowment. To copy other-
wise, or to republish, requires a,fee and/or speck1 permission from the
Endowment.

l Filter Step: The spatial operation is performed on
the approximate representation, such as the MBR.
For example, when joining two spatial relations,
the first step is to identify all intersecting pairs of
MBRs. When answering a window query, all MBRs
that intersect the query window are retrieved.

. Refinement Step: The MBRs retrieved in the filter
step are validated with the actual spatial objects. In
a spatial join, the objects corresponding to each in-
tersecting MBR pair produced by the filter step are
checked to see whether they actually intersect.

Proceedings of the 24th VLDB Conference The filter step of the spatial join has been studied ex-
New York, USA, 1998 tensively by a number of researchers. In the case where

Jeffrey Scott Vitterq

1 Introduction and Motivation
Geographic Information Systems (GIS) have gener-
ated enormous interest in the commercial and research
database communities over the last decade. Several
commercial products that manage spatial data are avail-
able. These include ESRI’s ARC/INFO [ARC93], Inter-
Graph’s MGE [Int97], and Informix [Ube94]. GISs typi-
cally store and manage spatial data such as points, lines,
poly-lines, polygons, and surfaces. Since the amount
of data they manage is quite large, GISs are often disk-
based systems.

570

spatial indices have been built on both relations, these
indices are commonly used in the implementation of the
spatial join. In this paper, we focus on the case in which
neither of the inputs to the join is indexed. As discussed
in [PD96] such cases arise when the relations to be joined
are intermediate results, and in a parallel database envi-
ronment where inputs are coming in from multiple pro-
cessors.

1.1 Summary of this Paper

We present a new algorithm for the filter step called
Scalable Sweeping-Based Spatial Join (SSSJ). The al-
gorithm uses several techniques for I/O-efficient com-
puting recently proposed in computational geometry
[APRf98, GTVV93, Arg95, AVV98, Arg97], plus the
well-known internal-memory plane-sweeping technique
(see, e.g., [PSSS]). It achieves theoretically optimal
worst-case bounds on both internal computation time and
I/O transfers, while also being efficient on the more well-
behaved data sets common in practice. We present exper-
imental results based on an efficient implementation of
the SSSJ algorithm, and compare it to the original as well
as an optimized version of the state-of-the-art Partition-
Based Spatial-Merge (PBSM) algorithm of Pate1 and De-
Witt [PD96].

The basic idea in our new algorithm is the follow-
ing: An initial sorting step is performed along the verti-
cal axis, after which the distribution-sweeping technique
is used to partition the input into a number of vertical
strips, such that the data in each strip can be efficiently
processed by an internal-memory plane-sweeping algo-
rithm. This basic idea of partitioning space such that the
data in each partition fits in memory, and then solving the
problem in each partition in internal memory, has been
used in many algorithms, including, e.g., the PBSM al-
gorithm [PD96].

However, unlike most previous algorithms’, our algo-
rithm only partitions the data along one axis. Another
important property of our algorithm is its theoretical op-
timality, which is based on the fact that, unlike in most
other algorithms, no data replication occurs.

A key observation that allowed us to greatly improve
the practical performance of our algorithm is that in
plane-sweeping algorithms not all input data is needed
in main memory at the same time. Typically only the so-
called sweepline structure needs to fit in memory, that is,
the data structure that contains the objects that intersect
the current sweepline of the plane-sweeping algorithm.
During our initial experiments, we observed that on all
our realistic data sets of size N, this sweepline structure
never grew beyond size O(a).

This observation, which is known as the square-root
rule in the VLSI literature (see, e.g., [GS87]), seems to
have been largely overlooked in the spatial join litera-
ture (with the exception of [BG92]). It implies that for
most real-life data sets, we can bypass the vertical par-
titioning step in our algorithm and directly perform the

‘with the exception of the work in [GS87]

plane-sweeping algorithm after the initial sorting step.
The result is a conceptually very simple algorithm, which
from an I/O perspective just consists of an external sort
followed by a single scan through the data. We im-
plemented our algorithm such that partitioning is only
done when the sweepline structure does not fit in mem-
ory. This assures that it is not only extremely efficient
on real-life data, but also offers guaranteed worst-case
bounds and predictable behavior on highly skewed and
worst-case input data2.

The overall performance of SSSJ depends on the ef-
ficiency of the internal plane-sweeping algorithm that is
employed. The same is of course also true for PBSM
and other spatial join algorithms that use plane-sweeping
at the lower level. This motivated us to perform experi-
ments with a number of different techniques for perform-
ing the plane-sweep. By using an efficient partitioning
heuristic, we were able to decrease the time spent on per-
forming the internal plane-sweep in PBSM by a factor of
4 as compared to the original implementation of Pate1
and Dewitt [PD96].

The data we used is a standard benchmark data for
the spatial join, namely the Tiger/Line data from the
US Bureau of Census [Tig92]. Our experiments showed
that SSSJ performs at least 25% better than the origi-
nal PBSM. On the other hand, the improved version of
PBSM actually performed about 10% better than SSSJ
on the real-life data we used - we believe that this is
due to an inefficiency in our implementation of SSSJ as
explained in Section 7. To illustrate the effect of data
skew on PBSM and SSSJ, we also ran experiments on
synthetic data sets. Here, we observe that SSSJ scales
smoothly with data size, while both versions of PBSM
are very adversely affected by skew.

Thus, our conclusion is that if we can assume that the
data is well-behaved, then a simple sort followed by an
optimized plane-sweep provides a solution that is very
easy to implement, particularly if we can leverage an
existing optimized sort procedure, and that achieves a
performance that is at least competitive to that of previ-
ous, usually more complicated, spatial join algorithms.
If, on the other hand, the data cannot be assumed to
be well-behaved, then it appears that PBSM, as well as
many other proposed spatial-join algorithms, may not
fare much better on such data than the simple plane-
sweeping solution, as they are also susceptible to skew
in the data3. In this case, an algorithm with guaranteed
bounds on the worst-case running time, such as SSSJ,
appears to be a better choice.

The remainder of this paper is organized as follows.
In Section 2 we discuss related research in more detail.
In Section 3, we describe a worst-case optimal solution to
the spatial-join problem. Section 4 discusses the square-

2We believe that SSSJ should also scale well with the dimension
d, though this remains to be demonstrated experimentally. We would
expect the sweepline structure to grow as N(d-l)ld, which can exceed
the size of main memory even for reasonable values of N.

3Most previous papers seem to limit their experiments to well-
behaved data.

571

root rule and its implications for plane sweeping algo-
rithms. Section 5 presents the SSSJ algorithm. In Sec-
tion 6 we describe and compare different implementa-
tions of the internal-memory plane-sweeping algorithm.
Section 7 presents our main experimental results com-
paring SSSJ with PBSM. Finally, Section 8 offers some
concluding remarks.

2 Related Research

Recall that the spatial join is usually solved in two steps:
a filter step followed by a refinement step. These two
steps are largely independent in terms of their implemen-
tation, and most papers in the literature concentrate on
only the filter step. In this section, we discuss the vari-
ous approaches that have been proposed to solve the filter
step. (For the rest of the paper, we will use the term “spa-
tial join” to refer to the filter step of the spatial join unless
explicitly stated otherwise.)

An early algorithm proposed by Orenstein [Ore86,
OM88, Ore891 uses a space-filling curve, called Peano
curve or z-ordering, to associate each rectangle with a
set of small blocks, called pixels, on that curve, and then
performs a sort-merge join along the curve. The perfor-
mance of the resulting algorithm is sensitive to the size of
the pixels chosen, in that smaller pixels leads to better fil-
tering, but also increase the number of pixels associated
with each object.

In another transformational approach [BHF93], the
MBRs of spatial objects (which are rectangles in two
dimensions) are transformed into points in four dimen-
sions. The resulting points are stored in a multi-attribute
data structure such as the grid file [NHS84], which is
then used for the filter step.

Rotem [Rot911 proposes a spatial join algorithm
based on the join index of Valduriez [Va187]. The join
index used in [Rot911 partially computes the result of the
spatial join using a grid file.

There has recently been much interest in using
spatial index structures like the R-tree [Gut85], R+-
tree [SRF87], R*-tree [BKSS90], and PMR quad-
tree [Sam891 to speed up the filter step of the spatial join.
Brinkhoff, Kriegel, and Seeger [BKS93] propose a spa-
tial join algorithm based on R*-trees. Their algorithm is
a carefully synchronized depth-first traversal of the two
trees to be joined. An improvement of this algorithm was
recently reported in [HJR97]. (Another interesting tech-
nique for efficiently traversing a multi-dimensional index
structure was proposed in [KHT89] in a slightly different
context.) Gunther [Gun931 studies the tradeoffs between
using join indices and spatial indices for the spatial join.
Hoe1 and Samet [HS92] propose the use of PMR quad-
trees for the spatial join and compare it against members
of the R-tree family.

Lo and Ravishankar [LR94] discuss the case where
exactly one of the relations does not have an index. They
construct an index for that relation on the fly, by using
the index on the other relation as a starting point (the

seed). Once the index is constructed, the tree join algo-
rithm of [BKS93] is used to perform the actual join.

The other major direction for research on the spatial
join has focused on the case where neither of the input
relations has an index. Lo and Ravishankar [LR95] pro-
pose to first build indices for the relations on the fly using
spatial sampling techniques and then use the tree join al-
gorithm of [BKS93] for computing the join. Another re-
cent paper [KS971 proposes an algorithm based on a filter
tree structure.

Pate1 and Dewitt [PD96] and Lo and Ravis-
hankar [LR96] both propose hash-based spatial join al-
gorithms that use a spatial partitioning function to sub-
divide the input, such that each partition fits entirely in
memory. Pate1 and Dewitt then use a plane-sweeping al-
gorithm proposed in [BKS93] to perform the join within
each partition, while Lo and Ravishankar use an indexed
nested loop join.

Gtiting and Schilling [GS87] give an interesting dis-
cussion of plane-sweeping for computing rectangle inter-
sections, and point out the importance of the “square-root
rule” for this problem. They are also the first to consider
the effect of I/O from an analytical standpoint; the algo-
rithmic bounds they obtain are slightly suboptimal in the
number of I/O operations. Their algorithm was subse-
quently implemented in the Gral system [BG92], an ex-
tensible database system for geometric applications, but
we are not aware of any experimental comparison with
other approaches.

The work in [GS87, BG92] is probably the previous
contribution most closely related to our approach. In par-
ticular, the algorithm that is proposed is similar to ours in
that it partitions the input along a single axis. However,
at each level the input is partitioned into only two strips
as opposed to O(fi) strips in our algorithm, resulting
in an additional factor of O(log, m) in the running time.

3 An Optimal Spatial Join Algorithm

In this section, we describe a spatial join algorithm that is
worst-case optimal in terms of the number of I/O trans-
fers. This algorithm will be used as a building block in
the SSSJ algorithm described in the next section. We
point out that this section is based on the results and
theoretical framework developed in [APRf98]. The al-
gorithm uses the distribution-sweeping technique devel-
oped in [GTVV93] and further developed in [Arg95,
AVV98].

Following Aggarwal and Vitter [AV88] we use the fol-
lowing I/O-model: We make the assumption that each
access to disk transmits one disk block with B units of
data, and we count this as one I/O operation4 We denote
the total amount of main memory by M. We assume
that we are given two sets P = {pi) i E [Nl]} and

41n practice there is, of course, a large difference between the per-
formance of random and sequential I/O. The correct way to interpret
the theoretical results of this section in a practical context is to assume
that the disk block size is large enough to mask the difference between
random and sequential l/O.

572

Q = {qi 1 i E [Nz]} of rectangles, where [v] denotes
the set (0, 1, . . , v - l}. For convenience, we define
N = Ni + Na. We use T to denote the number of pairs
of intersecting rectangles reported by the algorithm. We
use lower-case notation to denote the size of the corre-
sponding upper-case quantities when measured in terms
of the number of disk blocks: n = NIB, t = T/B,
m = M/B. We define log,n = max{l, s}. The
efficiency of our algorithms is measured in terms of the
number of I/O operations that are performed. All bounds
reported in this section are provable worst-case bounds.

We solve the two-dimensional join problem in two
steps. We first solve the simpler one-dimensional join
problem of reporting all intersections between two sets
of intervals. We then use this as a building block in the
two-dimensional join, which as based on the distribution
sweeping technique.

3.1 One-dimensional Case: Interval Join

In the one-dimensional join problem, each interval r E P
or r E Q is defined by a lower boundary r,in and an
upper boundary rmax. The problem is to report all in-
tersections between an interval in P and an interval in
Q. We assume that at the beginning of the algorithm,
P and Q have already been sorted into one list L of
intervals by their lower boundaries, which can be done
in O(n log, n) I/O operations using, say, the optimal
sorting algorithm from [AV88]. We will show that the
following algorithm then completes the interval join in
O(n + t) I/O operations.

Algorithm Interval-loin:

(1) Scan the list in order of increasing lower bound-
aries, maintaining two initially empty lists Lp and
LQ of “active” intervals from P and Q. More pre-
cisely, for every interval r in L, do the following:

(a) If r E P, then add T to Lp, and scan through
the entire list LQ. If an interval q in LQ inter-
sects with T, output the intersection and keep
q in LQ; otherwise delete q from LQ.

(b) If T E Q, then add r to LQ, and scan through
the entire list Lp. If an interval p in Lp inter-
sects with T, output the intersection and keep
p in Lp; otherwise delete p from Lp.

In order to see that this algorithm correctly outputs all
intersections exactly once, we observe that pairs p E P
and q E Q that intersect can be classified into two
cases: (i) p begins before q and (ii) q begins before
p. (Coincident intervals are easily handled using a tie-
breaking strategy.) Step (l)(a) reports all intersections
of an interval from P with currently “active” intervals
from Q, thus handling case (ii), while step (l)(b) simi-
larly handles case (i).

In order to establish the bound of O(n + t) I/O opera-
tions for the algorithm, we need to show that the lists Lp

and LQ can be efficiently maintained in external mem-
ory. As it turns out, it suffices if we keep only a single
block of each list in main memory. To add an interval to
a list, we add it to this block, and write the block out to
disk whenever it becomes full. To scan the list for inter-
sections, we just read the entire list and write out again
all intervals that are not deleted. We will refer to this
simple implementation of a list as an I/O-list.

To see that this scheme satisfies the claimed bound,
note that each interval in L is added to an I/O-list only
once, and that in each subsequent scan of an I/O-list, the
interval is either permanently removed, or it produces an
intersection with the interval that initiated the scan. Since
all output is done in complete blocks, this results in at
most n + t reads and n + t writes to maintain the lists
Lp and LQ, plus another t writes to output the result, for
a total of 2n + 3t I/O operations in the algorithm. Thus,
we have the following Lemma.

Lemma 3.1 Given a list of intervals from P and Q
sorted by their lower boundaries, Algorithm Inter-
val Join computes all intersections between intervals
from P and Q using O(n + t) I/O transfers.

3.2 The Two-dimensional Case: Rectangle Join

Recall that in the two-dimensional join problem, each
rectangle r E P or r E Q is defined by a lower bound-
ary r$in and upper boundary r&,, in the x-axis, and by
a lower boundary r$,, and upper boundary rg,, in the
y-axis. The problem is to report all intersections between
a rectangle in P and a rectangle in Q. We will show that
the following algorithm performs O(n log, n + t) I/O
operations, and thus asymptotically matches the lower
bound implied by the sorting lower bound of [AV88] (see
also [AM]). It can be shown that the algorithm is also op-
timal in terms of CPU time. We again assume that at the
beginning of the algorithm, P and Q have already been
sorted into one list L of rectangles by their lower bound-
aries in the y-axis, which can be done in O(nlog, n)
I/O operations.

Algorithm Rectangle Join:

(1)

(2)

Partition the two-dimensional space into Ic vertical
strips (not necessarily of equal width) such that at
most 2N/k rectangles start or end in any strip, for
some k to be chosen later (see Figure 1).

A rectangle is called small if it is contained in a sin-
gle strip, and large otherwise. Now partition each
large rectangle into exactly three pieces, two end
pieces in the first and last strip that the rectangle in-
tersects with, and one center piece in between the
end pieces. We then solve the problem in the fol-
lowing two steps:

(a) First compute all intersections between a cen-
ter piece from P and a center piece from Q,
and all intersections between a center piece
from P and a small rectangle from Q, or a cen-
ter piece from Q and a small rectangle from P.

573

(b) In each strip, recursively compute all intersec-
tions between an end piece or small rectangle
from P and an end piece or small rectangle
from Q.

goes into t’ 2

‘?r

goes into L” ‘2
P

L

indicates pieces that
will go into recursive
subproblems

Figure 1: An example of the partitioning used by the
two-dimensional join algorithm. Here, k = 4, and each
strip has no more than three rectangles that will be han-
dled further down in the recursion. (Such rectangles are
shown as shaded boxes.) The I/O-lists that rectangles
will get added into are shown for some of the rectangles.

We can compute the boundaries of the strips in
Step (1) by sorting the z-coordinates of the end points,
and then scanning the sorted list. In this case, we have
to be careful to split the sorted list into several smaller
sorted lists as we recurse, since we cannot afford to sort
again in each level of the recursion; the same is also the
case for the list L. (In practice, the most efficient way
to find the strip boundaries will be based on sampling.)
The recursion in Step (2)(b) terminates when the entire
subproblem fits into memory, at which point we can use
an internal plane-sweeping algorithm to solve the prob-
lem. Note that the total number of input rectangles at
each level of the recursion is at most 2N, since every
interval that is partitioned can result in at most two end
pieces,

What remains is to describe the implementation of
Step (2)(a). The problem of computing the intersec-
tions involving center pieces in (2)(a) is quite similar
to the interval join problem in the previous section. In
particular, any center piece can only begin and end at
the strip boundaries. This means that a small rectangle
r contained in strip i intersects a center piece s going
through strip i if and only if the intervals (r$, , rkax)
and (SLin> +LJ intersect. Thus, we could compute the
desired intersections by running Ic interval joins along the
y-axis, one for each strip.

However, this direct solution does not guarantee the
claimed bound, since a center piece spanning a large
number of strips would have to participate in each of the
corresponding interval joins. We solve this problem by
performing all these interval joins in a single scan of the
rectangle list L. The key idea is that instead of using two
I/O-lists Lp and LQ, we maintain a total of (k+2)(k+3)
I/O-lists L”j? and Ly with 0 < i 5 j 5 Ic + 1 (refer
again to Figure 1). The algorithm for Step (2)(a) then
proceeds as follows:

Algorithm Rectangle-loin (continued):

(2a) Scan list L in order of increasing value of rkin. For
every interval T in L do the following:

(i) If r E P and r is small and contained in strip
i, then insert r into Ly. Perform a scan of
every list L$j with h < i < j, computing in-
tersections and deleting every element of the
list that does not intersect with T. Also, write
out T lazily to disk for use in the recursive sub-
problem in strip i.

(ii) If r E P and T is large and its center piece
consists of strips i, i + 1, . . . , j, then insert
r into L~l ,i+l. Perform a scan of every list

L$” with i < j’ and j > i’, computing in-
tersections and deleting every element of a list
that does not intersect with T. Also, write out
the end pieces of r lazily to disk for use in the
appropriate recursive subproblems.

(iii) If T E Q and r is small, do (i) with the roles of
P and Q reversed.

(iv) If T E Q and T is large, do (ii) with the roles
of P and Q reversed.

Lemma 3.2 Algorithm RectangleJoin outputs all inter-
sections between rectangles in P and rectangles in Q
correctly and only once.

Proof: (sketch) We first claim that if a rectangle is
large, then Step (2)(a) reports all the intersections be-
tween the large rectangle’s center piece and all other rect-
angles in the other set. To see this, we classify all the
(p, q)-pairs that intersect, and where p is large, into two
cases: (a) qLin < pki, and (6) pki, < q$,,. (Equal-
ities are easily handled using a tie-breaking strategy.)
Steps (2)(a)(i) and (ii) clearly handle all intersections
from case (a) because the currently “active” intervals are
stored in the various I/O-lists, and Steps (2)(a)(i) and (ii)
intersect p with all of the lists that intersect with its center
piece. Steps (2)(a)(iii) and (iv) similarly handle case (p).
The case where the interval from q is large follows from
symmetry.

In order to avoid reporting an intersection multiple
times at different levels of the recursion, we keep track
of intervals whose endpoints extend beyond the “current
boundaries” of the recursion and store them in separate
distinguished I/O-lists. (There are at most 2k such lists.)
By never comparing elements from distinguished lists of
P and Q, we avoid reporting duplicates. 0

To show a bound on the number of I/OS used by the
algorithm, we observe that as in the interval join algo-
rithm from the previous section, each small rectangle and
each center piece is inserted in a list exactly once. A
rectangle in a list produces an intersection every time it
is scanned, except for the last time, when it is deleted.
This analysis requires that each of the roughly k2 I/O-
lists has exclusive use of at least one block of main mem-
ory, so the partitioning factor k of the distribution sweep

574

should be chosen to be at most 6. Thus, the cost of
Step (2)(a) is linear in the input size and the number
of intersections produced in this step, and the total cost
over the O(log, n = O(log, n)) levels of recursion is
O(n log, n + t).

Note that the sublists of L created by Step (2)(a) for
use in the recursive computations inside the strips are in
sorted order. Putting everything together, we have the
following theorem.

Theorem 3.3 Given a fist of rectangles from P and Q
sorted by their lower boundaries in one axis, Algorithm
Rectangle Join reports all intersections between rectan-
gles from P and Q using O(n log, n + t) I/O transfers.

4 Plane Sweeping and the Square-Root
Rule

As discussed in the introduction, the overall efficiency
of many spatial join algorithms is greatly influenced by
the plane-sweeping algorithm that is employed as a sub-
routine. Several efficient plane-sweeping algorithms for
rectangle intersection have been proposed in the com-
putational geometry literature. Of course, these algo-
rithms were designed under the assumption that the data
fits completely in main memory. In this section we will
show that under certain realistic assumptions about the
input data, many of the internal-memory algorithms can
in fact be applied to input sets that are much larger than
the available memory.

4.1 Plane Sweeping

The rectangle intersection problem can be solved in main
memory by applying a technique called Plane Sweep-
ing. Plane sweeping is one of the most basic algorithmic
paradigms in computational geometry (see, e.g., [PSSS]).
Simply speaking, a plane-sweeping (or sweepline) algo-
rithm attempts to solve a geometric problem by mov-
ing a vertical or horizontal sweepline across the scene,
processing objects as they are reached by the sweepline.
Clearly, for any pair of intersecting rectangles there is
a horizontal line that passes through both rectangles.
Hence, a plane-sweeping algorithm for rectangle inter-
section only has to find all intersections between rect-
angles located on the same sweepline, thus reducing the
problem to a (dynamic) one-dimensional interval inter-
section problem.

A typical plane-sweeping algorithm for rectangle in-
tersection uses a dynamic data structure that allows inser-
tion, deletion, and intersection queries on intervals. Rect-
angles are inserted into the structure as they are reached
by the sweepline, at which time a query for intersections
with the new rectangle is performed, and are removed
after the sweepline has passed over them. Many opti-
mal and suboptimal dynamic data structures for intervals
have been proposed; important examples are the interval
tree [Ede83], the priority search tree [McC85], and the
segment tree [Ben77].

4.2 The Square-Root Rule

In most implementations of plane-sweeping algorithms,
the maximum amount of memory ever needed is deter-
mined by the maximum number of rectangles that are
intersected by a single horizontal line. For most “real
life” input data this number, which we will refer to as the
maximum overlap of a data set, is actually significantly
smaller than the total number of rectangles. This ob-
servation has previously been made by other researchers
(see [GS87] and the references therein), and is known as
the “square-root rule” in the VLSI literature. That is, for
a data set of size N, the number of rectangles intersected
by any horizontal or vertical line is typically O(a),
with a moderate multiplicative constant determined by
the data set.

We consider the standard benchmark data for spa-
tial join, namely the US Bureau of the Census
TIGERnine [Tig92] data. These data files consist of
polygonal line entities representing physical features
such as rivers, roads, railroad lines, etc. We used the data
for the states of New Jersey, Rhode Island, Connecticut
and New York. Table 1 shows the maximum number of
rectangles that are intersected by any horizontal line, for
the road and hydrographic features of the four data sets.
The number of spatial objects in each data set is given
along with the maximum number of the corresponding
MBR rectangles that overlap with any horizontal line.
Note that the maximum overlap for the TIGER data ap-
pears to be consistent with the square-root rule.

Thus, if a data set satisfies the square-root rule, then
we can use plane sweeping to solve the spatial join prob-
lem on inputs that are much larger than the available
amount of memory, as long as the data structure used
by the plane sweep never grows beyond the size of the
memory.

Rhode Island 68277
Connecticut 188642
New Jersey 414442
New York 870412

Road Max.
Overlap
Hydro

54
14.5
156
362

Table 1: Characteristics of road and hydrographic data
from TIGER/Line data.

5 Scalable Sweeping-Based Spatial Join

We now describe the SSSJ algorithm, which is obtained
by combining the theoretically optimal Rectangle-loin
algorithm presented in Section 3 with an efficient plane-
sweeping technique. The resulting SSSJ performs an ini-
tial sort, and then directly attempts to use plane-sweeping
to solve the join problem. The vertical partitioning step
in Rectangle-loin is only performed if the sweeping
structure used by the plane-sweep grows beyond the size
of the main memory.

Alternatively, we could use random sampling to es-

575

Scalable Sweeping-Based Spatial Join:

Sort sets P and Q on their lower y-coordinates
Initiate an internal-memory plane-sweep
if the plane-sweep runs out of main memory

perform one level of partitioning using
RectangleJoin and recursively call SSSJ on
each subproblem

Figure 2: SSSJ algorithm for computing the join between
two sets P and Q of rectangles.

timate the overlap of a data set with guaranteed confi-
dence bounds, and then use this information to decide
whether the input needs to be partitioned; the details are
omitted due to space constraints. In our implementation
we followed the slightly less efficient approach describes
above. After the initial sort we simply start the internal
plane-sweeping algorithm, assuming that the sweepline
structure will fit in memory. During the sweep we moni-
tor the size of the structure, and if it reaches a predefined
threshold we abort the sweep and call RectangleJoin.

Given the large main memory sizes of current work-
stations, we expect that in most cases, we can process
data sets on the order of several hundred billion rectan-
gles with the internal plane-sweeping algorithm.5 How-
ever, if the data is extremely large, or is highly skewed,
then SSSJ will invoke the vertical partitioning at a mod-
erate increase in running time.

In most cases, SSSJ will skip the vertical partition-
ing, and our spatial join algorithm is reduced to an ini-
tial external sorting step, followed by a scan over the
sorted data (during which the internal plane-sweeping al-
gorithm is run). We believe that this observation is con-
ceptually important for two reasons. First, it provides a
very simple and insightful view of the structure and I/O
behavior of our spatial join algorithm. Second, it allows
for a simple and fast implementation, by leveraging the
performance of the highly tuned sorting routines offered
by many database systems. There has been considerable
work on optimized database sorts in recent years (see,
e.g,, [Aga96, DDC+97, NBC+94]), and it appears wise
to try to draw on these results.

6 Fast Plane-Sweeping Methods

As mentioned already, the overall efficiency of many spa-
tial join algorithm is greatly influenced by the internal-
memory join algorithm used as a subroutine. In this sec-
tion we describe and compare several internal-memory
plane-sweeping algorithms. We present the algorithms
in Subsection 6.1 and report the results of experiments
with the TIGER/line data set in Subsection 6.2.

5 We estimate that the TIGER/Line data for the enrire United States
will be no more than 50 million rectangles.

6.1 Algorithms

Recall from Section 4.1 that the most common plane-
sweeping algorithm for the rectangle intersection prob-
lem is based on an abstract data structure for storing
and querying intervals. We implemented several ver-
sions of this data structure. In the following we first give
a generic description of the plane-sweeping algorithm,
and then describe the different data structure implemen-
tations. We also describe the plane-sweeping algorithm
used in PBSM, which we also implemented for compari-
son. This algorithm was proposed in [BKS93], and does
not use an interval data structure.

As before, assume that we have two sets P = {pi 1
i E [Nl]} and Q = {qi 1 i E [Nx]} of rectangles,
sorted in ascending order by their lower boundary in the
y-axis. We want to find intersections between P and
Q by sweeping the plane with a horizontal sweepline.
For a rectangle T = (T~i,, T;,,, rkin, rLax), we call
~L&xl h t e interval of T, rLin the starting time of

the expiration time of T. Let D be an in-
siance ofmF<e generic data structure V that supports the
following operations on rectangles and their associated
intervals:

(1) Insert(D, r) inserts a rectangle into D.

(2) Delete(D, y) removes from D all rectangles T with
expiration time T&,, < y.

(3) Query(D,r) reports all rectangles in D whose in-
terval overlaps with that of T.

Figure 3 shows the pseudocode for the resulting algo-
rithm Sweep Join-Generic.

Algorithm Sweep Join-Generic:
/* Head(P) and Head(Q) denote the current first el-
ements in the sorted lists P and Q of rectangles, and
Dp and DQ are two initially empty data structures. */

repeat until P and Q are empty

Let p = Head(P) and q = Head(Q)
if&i, < Skin

Insert(Dp, p)
Delete(DQ, Pkin)
Quw(DQy p)
Remove p from P

else
Insert(DQ , q)
Delete(Dp, qzin)
Quev(Dp, 4)
Remove q from Q

Figure 3: Generic plane-sweeping algorithm for comput-
ing the join between two sets P and Q of rectangles.

We implemented three different versions of D and ob-
tained three different versions of the generic algorithm:

576

Tree-Sweep where 2) is implemented as an interval tree
data structure, List-Sweep where 2) is implemented us-
ing a single linked list, and StripedSweep where D is
implemented by partitioning the plane into vertical strips
and using a separate linked list for each strip. Finally, we
refer to the algorithm used in PBSM as ForwurdSweep.
In the following we discuss each of these algorithms.

Algorithm TreeSweep uses a data structure that is
essentially a combination of an interval tree [Ede83] and
a skip list [Pug90]. More precisely, we used a simplified
dynamic version of the interval tree similar to that de-
scribed in Section 15.3 and Exercise 15.3-4 of [CLR90],
but implemented the structure using a randomized skip
list instead of a balanced tree structure. (Another, though
somewhat different, structure combining interval trees
and skip lists has been described in [Han91].) Our rea-
son for using a skip list is that it allows for a fairly simple
but efficient implementation while matching (in a prob-
abilistic sense) the good worst-case behavior of a bal-
anced tree. With this data structure, the expected time for
an insertion can be shown to be O(log N), while query
and deletion operations take time O(T log N), where T
is the number of rectangles reported or deleted during
the operation. The worst-case running time of this algo-
rithm is O(N log N+T log N), which is at most a log N
factor away from the optimal O(N log N + T) bound.
However, on real-life data, the intersection query time
is usually O(log N + T), as most intersecting rectan-
gles are typically close to each other in the tree. Thus,
we would not expect significant improvements from
more complicated, but asymptotically optimal data struc-
tures [McC85, Ede83].

Algorithm List-Sweep uses a simple linked-list data
structure. To decrease allocation and other overheads and
improve locality, each element of the linked list can hold
up to 16 rectangles. Insertion is done in constant time,
while query and deletion both take time linear in the
number of elements in the list in the worst case. Thus,
the worst case running time of the algorithm is O(N2)
(O(Nfi) if we assume that the square root rule ap-
plies).

Algorithm Striped-Sweep uses a data structure
based on a simple partitioning heuristic. The basic idea
is to divide the domain into a number of vertical strips of
equal width and use one instance of the linked list struc-
ture from List-Sweep in each strip. Intervals are stored
in each strip that they intersect. The key parameter in
this data structure is the number of strips.used. By using
s strips, we hope to achieve an improvement of up to a
factor of s in query and deletion time. However, if there
are too many strips, many intervals will intersect more
than one strip, thus increasing the size of the data struc-
ture and slowing down the operations. We experimented
with a number of values for the number of strips to de-
termine the optimum. Insertions can be done in constant
time, while searching and deletion both can be linear in
the worst case. However, we expect this algorithm to
perform very well for real-life data sets that have many

small rectangles and that are not extremely clustered in
one area.

Algorithm ForwardSweep is the plane-sweeping
algorithm employed by Pate1 and Dewitt in PBSM, and
was first proposed in [BKS93]. This algorithm is some-
what similar in structure to List-Sweep, except that it
does not use a linked list data structure to store inter-
vals encountered in the recent past, but scans forward in
the sorted lists for intervals that will intersect the current
interval in the future; see Figure 4 for the structure of the
algorithm. The worst-case running time of this algorithm
is O(N2) (O(Nfl) ‘f 1 we assume that the square root
rule applies).

Algorithm ForwardSweep:
/* Head(P) and Head(Q) denote the current first ele-
ments in the sorted lists P and Q of rectangles. */

repeat until P and Q are empty

Let p = Head(P) and q = Head(Q)
if&i, < &in

Remove p from P
Scan Q from the current position and
report all rectangles that intersect p.
Stop when the current rectangle r E Q
satisfies T& > pk,,.

else
Remove q from Q
Scan P from the current position and
report all rectangles that intersects q.
Stop when the current rectangle T E P
satisfies rkin > qsax.

Figure 4: Algorithm ForwardSweep used by PBSM for
computing the join between P and Q.

6.2 Experimental Results

In order to compare the four algorithms we conducted
experiments joining the road and hydrographic line fea-
tures from the states of Rhode Island, Connecticut and
New Jersey. The input data was already located in main
memory at the start of each run. The experiments were
conducted on a Sun SparcStation 20 with 32 megabytes
of main memory (we were thus unable to fit the New
York data into internal memory). To decrease the cost
of deletion operations, we introduced a lazy factor 1 and
only actually performed the deletion operation every Ith
time it was called. We chose 1 = 10 in Tree-Sweep and
List-Sweep and 1 = 5 in StripedSweep. We varied the
number of strips in StripedSweep from 4 to 256.

Table 2 compares the running times of the four plane-
sweeping algorithms (excluding the sorting times). We
can clearly see that StripedSweep outperforms the other
algorithms by a factor of 4 to 5. The algorithm achieves
the best performance for 64 to 128 strips; beyond this

577

Algorithm RI CT NJ
TreeSweep 2,28 8.57 16.65
Forward-Sweep 1.18 12.0 15.8
List-Sweep 1.30 10.19 14.83
StripedSweep(4) 0.72 4.02 6.91
StripedSweep(8) 0.56 2.72 4.91
StripedSweep(16) 0.48 1.97 3.73
StripedSweep(32) 0.43 1.57 3.18
StripedSweep(64) 0.42 1.39 3.06
StripedSweep(128) 0.45 1.36 2.91
StripedSweep(256) 0.54 1.61 3.25

Table 2: Performance comparison of the four plane-
sweeping algorithms in main memory (times in seconds).

point, the performance slowly degrades due to increased
replication. (For k = 256, we get a replication rate of
more than 40% on the smallest data set, and more than
20% on the other two sets.) Algorithms ForwardSweep
and List-Sweep are similar in performance, which is to
be expected given their similar structure. Maybe a bit
surprising is that ListSweep actually outperforms For-
ward-sweep slightly on the larger data sets, even though
it has additional overheads associated with maintaining
a data structure. Finally, Tree-Sweep is slower than For-
wardSweep and List-Sweep on small (RI) and thin (NJ)
sets, and faster on wide (CT) and large (NY) sets.6

We point out that Tree-Sweep is the only algo-
rithm that has a good worst-case behavior. While
StripedSweep is the fastest algorithm on the tested data
sets, Tree-Sweep is useful because it offers reasonably
good performance even on very skewed data. As dis-
cussed in the next section we therefore decided to use
both of them in our practically efficient, yet skew resis-
tant, SSSJ algorithm.

7 Experimental Results

In this section, we compare the performance of the SSSJ
and PBSM algorithms. We implemented the SSSJ algo-
rithm along with two versions of the PBSM algorithm,
one that follows exactly the description of Pate1 and De-
Witt [PD96] and one that replaces their internal-memory
plane-sweeping procedure with StripedSweep. We re-
fer to the original and improved PBSM as QPBSM and
MPBSM, respectively.

We begin by giving a sketch of the PBSM algorithm.
We then describe the details of our implementations,
and compare the performance of SSSJ against that of
QPBSM and MPBSM on TIGER/Line data sets. Finally,
we compare the performance of the three algorithms on
some artificial worst-case data sets that illustrate the ro-
bustness of SSSJ.

6The claim for the New York data set was verified with additional
runs on a different machine with larger main memory.

7.1 Sketch of the PBSM Algorithm

The filter step of PBSM consists of a decomposition step
followed by a plane-sweeping step. In the first step the
input is divided into p partitions such that each parti-
tion fits in memory. In the second step, each partition is
loaded into memory and intersections are reported using
an internal-memory plane-sweeping algorithm.

To form the partitions in the first step, a spatial par-
titioning function is used. More precisely, the input is
divided into tiles of some fixed size. The number of tiles
is somewhat larger than the number of partitions p. To
form a partition, a tile-to-partition mapping scheme is
used that combines several tiles into one partition. An in-
put rectangle is placed in each partition it intersects with.

The tile-to-partition mapping scheme is obtained by
ordering the tiles in row-major order, and using either
round robin or hashing on the tile number. Figure 5 il-
lustrates the round-robin scheme, which was used in our
implementations of PBSM. Note that an input rectangle
can appear in more than one partition, which makes it
very difficult to compute a priori the number of partitions
such that each partition fits in internal memory. Instead,
an estimation is used that does not take duplication into
account.
-------~-------r------~-------,
I
I I I I I
I I I 1 I
L _T”“-O/J’“-O : Tile l/Part 1 i Tile2/Part2 ! Tile 3E’art 0 I

1------
-r------~-------,

; _T""_45rtJ

I
1----

I
I

’ Tile 8IPart 2 ’ Tile 9/Part 0 ’
I I

I-------‘------‘---------------
Tile IO/Part II Tile 1 I/part 21

Figure 5: Partitioning with 3 partitions and 12 tiles us-
ing the round-robin scheme. The rectangle drawn with a
solid line will appear in all three partitions.

7.2 Implementation Details

We implemented the three algorithms using the
Transparent Parallel I/O Programming Environment
(TPIE) system [Ven94, Ven95, VV96] (see also
http://www.cs.duke.edu/TPIE/). TPIE is a collection of
ternplated functions and classes to support high-level
yet efficient implementations of external-memory algo-
rithms. The basic data structure in TPIE is a stream, rep-
resenting a list of objects of an arbitrary type. The sys-
tem contains I/O-efficient implementations of algorithms
for scanning, merging, distributing, and sorting streams,
which are building blocks for our algorithms. This made
the implementation relatively easy and facilitated mod-
ular design. The input data consists of two streams of
rectangles, each rectangle being a structure containing
the coordinates of the lower left corner and of the upper
right corner, and an ID, for a total of 40 bytes. The out-
put consists of a stream containing the IDS of each pair

578

Figure 6: Running times for TIGER data. For MPBSM
and QPBSM, Phase 1 consists of the partitioning step,
while for SSSJ, it consists of the initial sorting step. The
remaining steps are contained in Phase 2.

of intersecting rectangles.
As described in Section 6.1, SSSJ first performs a sort.

We used TPIE’s external-memory merge sorting routine
in our implementation. Then SSSJ tries to perform the
internal-memory plane-sweeping directly, and reverts to
Rectangle-loin to partition the data only if the sweep
runs out of main memory. We used StripedSweep as the
default internal memory algorithm for the first sweep at-
tempt, and switched to TreeSweep once partitioning has
occurred. In Rectangle-loin, we used random sampling
to determine the strip boundaries, thus avoiding an ad-
ditional sort of the data along the z dimension. The I/O
lists used by Rectangle-loin were implemented as TPIE
streams.

The PBSM implementations, QPBSM and MPBSM,
consist of three basic steps: A partitioning step, which
uses 1024 tiles7 and then for each generated partition
an internal-memory sorting step and finally a plane-
sweeping step. The two PBSM programs differ in the
way they perform the plane-sweep: QPBSM uses the
ForwardSweep of Pate1 and Dewitt, while MPBSM
uses our faster Striped-Sweep.

7.3 Experiments with TIGER Data

We performed our experiments on a Sun SparcStation 20
running Solaris 2.5, with 32 megabytes of internal mem-
ory. In order to avoid network activity, we used a local
disk for the input files as well as for scratch files. We put
no restrictions on the amount of internal memory that
QPBSM and MPBSM could use, and thus the virtual-
memory system was invoked when needed. However,
the amount of internal memory used by SSSJ was limited
to 12 megabytes, which was the amount of free memory
on the machine when the program was running. For all
experiments, the logical block transfer size used by the
TPIE streams was set to 48 times the physical disk block

7This is the value used by Pate1 and Dewitt in their experiments.
They also found that increasing the number of tiles had little effect on
the overall execution time.

0 Iooo(x)2ocww3000004~5000006070W00800000900000 I.46

Number of rectangles

Figure 7: Running times for tall-rect

size of 4 kilobytes, in order to achieve a high transfer
rate.

Figure 6 shows the running times of the three pro-
grams on the TIGER data sets. It can be seen that
both SSSJ and MPBSM clearly outperform QPBSM:
SSSJ performs at least 25% better than QPBSM, while
MPBSM performs approximately 10% better than SSSJ.
The gain in performance over QPBSM is due to the use
of StripedSweep in SSSJ and MPBSM. As the max-
imum overlap of the five data sets is relatively small,
SSSJ only runs the TPIE external-memory sort and the
internal-memory plane-sweep.

From an I/O perspective, the behavior of MPBSM and
SSSJ is as follows. SSSJ first performs one scan over
the data to produce sorted runs and then another scan
to merge the sorted runs (in the TPIE merge sort), be-
fore scanning the data again to perform the plane-sweep.
MPBSM, on the other hand, first distributes the data to
the partitions using one scan, and then performs a sec-
ond scan over the data that sorts each partition in inter-
nal memory and performs the plane-sweep on it. Thus,
MPBSM has a slight advantage in our implementation
because it makes one less scan of the data on disk.

A more efficient implementation of SSSJ would feed
the output of the merge step of the TPIE sort directly
into the scan used for the plane-sweep, thus eliminat-
ing one write and one read of the entire data. We be-
lieve that such an implementation would slightly outper-
form MPBSM. While conceptually this is a very simple
change, it is somewhat more difficult in our setup as it
would require us to open up and modify the TPIE merge
sort. In general, such a change might make it more dif-
ficult to utilize existing, highly optimized external sort
procedures.

7.4 Experiments with Synthetic Data

In order to illustrate the effect of skewed data distribu-
tions on performance, we compared the behavior of the
three algorithms on synthetically generated data sets. We
generated two data sets of skewed rectangles, following
a procedure used in [Chi95]. Each data set contains two

579

ROO -

0 200000 4ocwJ 600000 KM00 lc+M

Figure 8: Running times for wide-rect

sets of N/2 rectangles each, placed in the [0, N] x [0, N]
square. In order to guarantee that the reporting cost does
not dominate the searching cost, the rectangles are cho-
sen such that the total number of intersections between
rectangles from the two sets is O(N). The first data set,
called tall-rect, consists of long and skinny verti-
cal rectangles which result in a large maximum over-
lap. To construct the data, we used a fixed width h for
each rectangle (h = 10 in the experiments), and chose
the height uniformly in [O, N/2]. We also chose the z
and y coordinates of the lower left corner uniformly in
[0, N - h] and [0, N/2], respectively. The second data
set, called wide-rect, can be obtained by rotating the
t al 1 -ret t data set by 90 degrees. It has the same num-
ber of intersections, but a small expected maximum over-
lap.

Figure 7 shows the running times of the three algo-
rithms on the tall-rect data set. The performance
of MPBSM degrades quickly, due to the replication
of each input rectangle in several partitions. QPBSM
performs even worse because of its 0(N2) worst-case
plane-sweep: The rectangles are tall, and as we are scan-
ning in the 1/ direction, the time for each query becomes
O(N). This problem can be somewhat alleviated if we
increase the number of partitions. However, this would
further increase replication.

Figure 8 shows the running times on the wide-rect
data set. In this data set the maximum overlap is small
(constant), which is advantageous for all three programs.
However, the PBSM implementations still suffer from
excessive replication.

8 Conclusions and Open Problems

In this paper, we have proposed a new algorithm for
the spatial join problem called Scalable Sweeping-Based
Spatial Join (SSSJ), which combines efficiency on re-
alistic data with robustness against highly skewed and
worst-case data. We have also studied the performance of
several internal-memory plane-sweeping algorithms and
their implications for the overall performance of spatial
joins.

In our future work, we plan to compare the perfor-
mance of SSSJ against tree-based methods [BKS93]. We
also plan to study the problem of higher-dimensional
joins. In particular, three-dimensional joins would be in-
teresting since they arise quite naturally in GIS. Finally,
a question left open by our experiments with internal-
memory plane-sweeping algorithms is whether there ex-
ists a simple algorithm that matches the performance of
StripedSweep but that is less vulnerable to skew.

Acknowledgements
We would like to thank Jignesh Pate1 for his many clari-
fications on the implementation details of PBSM.

References
[A@61

lAMI

Ramesh C. Agarwal. A super scalar sort algorithm
for RISC urocessors. In Proc. SIGMOD Intl. Conf:
on Manag’ement of Data, pages 240-246, 1996. *
L. Arge and P. B. Miltersen. On showing lower
bounds for external-memory computational geom-
etry. Manuscript, 1998.

[APR+98] L. Arge, 0. Procopiuc, S. Ramaswamy, T. Suel,
and J. S. Vitter. Theory and practice of IIO-
efficient algorithms for multidimensional batched

[ARC931

lArg951

[A@71

[AV88]

[AVV98]

[Ben771

[BG92]

[BHF93]

[BKS93]

searching &oblems. In Proc. ACM-SIAM Symp.
on Discrete Algorithms, pages 685-694, 1998.
ARC/INFO. Understanding G&-the ARC/INFO
method. ARC/INFO, 1993. Rev. 6 for worksta-
tions.
L. Arge. The buffer tree: A new technique for
optimal I/O-algorithms. In Proc. Workshop on Al-
gorithms and Data Structures, LNCS 9.55, pages
334-345, 1995. A complete version appears as
BRICS Technical Report RS-96-28, University of
Aarhus.
L. Arge. External-memory algorithms with ap-
plications in geographic information systems. In
M. van Kreveld, J. Nievergelt, T. Roos, and P. Wid-
mayer, editors, Algorithmic Foundations of GIS.
Springer-Verlag, Lecture Notes in Computer Sci-
ence 1340, 1997.
A. Aggarwal and J. S. Vitter. The Input/Output
complexity of sorting and related problems. Com-
municationsoftheACM,31(9):111~1127, 1988.
L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments
in geographic information systems. Algorithmica
(to appear in special issues on Geographical In-
formation Systems), 1998. Extended abstract ap-
pears in Proc. of Third European Symposium on
Algorithms, ESA’95.
J. L. Bentley. Algorithms for Klee’s rectangle
uroblems. Dent. of Comnuter Science, Carnegie
Mellon Univ., unpublished notes, 1977. -
L. Becker and R. H. Gtiting. Rule-based opti-
mization and query processing in an extensible ge-
ometric database system. ACM Transactions on
Database Systems, 17(2):247-303, 1992.
L. Becker, K. Hinrichs, and U. Finke. A new algo-
rithm for computing joins with grid files. In Inter-
national Conference on Data Engineering, pages
190-198, 1993. IEEE Computer Society Press.
T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Ef-
ficient processing of spatial joins using R-trees.
In Proc. SIGMOD Intl. Conf: on Management of
Data, 1993.

580

[BKSS90]

[Chi95]

[CLR90]

[DDC+97]

[Ede83]

[GS87]

[GTVV93]

[Giin93]

[Gut851

[Han911

[HJR97]

[HS92]

[Int97]

[KHT89]

[KS971

[LR94]

[LR95]

[LR96]

N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Proc.
SIGMOD Intl. Conf on Management of Data,
1990.

Y.-J. Chiang. Experiments on the practical I/O
efficiency of geometric algorithms: Distribution
sweep vs. plane sweep. In Proc. Workshop on Al-
gorithms and Data Structures, LNCS 955, pages
346-357, 1995.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press, Cam-
bridge, Mass., 1990.

A. C. Arpaci Dusseau, R. H. Arpaci Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson.
High-performance sorting on networks of work-
stations. In Proc. SIGMOD Intl. Conf on Man-
agement of Data, pages 243-254, 1997.

H. Edelsbrunner. A new approach to rectangle in-
tersections, part I. Int. J. Computer Mathematics,
13:209-219, 1983.

R. H. Giiting and W. Schilling. A practical divide-
and-conquer algorithm for the rectangle intersec-
tion problem. Information Sciences, 42:95-l 12,
1987.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and
J. S. Vitter. External-memory computa%onal ge-
ometry. In Proc. IEEE Svmu. on Foundations of
CornpI Sci., pages 714-723, i993.

0. Gunther. Efficient computation of spatial joins.
In International Conference on Data Engineering,
pages 50-60, 1993. IEEE Computer Society Press.
A. Guttman. R-trees: A dynamic index struc-
ture for spatial searching. In Proc. ACM-SIGMOD
Conf on Management of Data, pages 47-57, 1985.

E. N. Hanson. The interval skip list: A data struc-
ture for finding all intervals that overlap a point.
In Proceedings of Algorithms and Data Structures
(WADS ‘91), volume 519 of LNCS, pages 153-
164. Springer, 1991.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner.
Spatial joins using R-trees: Breadth-first traversal
with global optimizations. In Proc. IEEE Interna-
tional ConJ on Very Large Databases, pages 396-
405,1997.

E. G. Hoe1 and H. Samet. A qualitative comparison
study of data structures for large linear segment
databases. In Proc. ACM SIGMOD Confi, page
205, 1992.

Intergraph Corp. MGE 7.0, “http:Nwww.inter-
graph.corn/isslproducts/mge/mge-7.O.htm”, 1997.

M. Kitsuregawa, L. Harada, and M. Takagi. Join
strategies on kd-tree indexed relations. In Inter-
national Conference on Data Engineering, pages
85-93, 1989. IEEE Computer Society Press.

N. Koudas and K. C. Sevcik. Size separation spa-
tial join. In Proc. SIGMOD Intl. Con8 on Manage-
ment of Data, pages 324-335, 1997.
M.-L. Lo and C. V. Ravishankar. Spatial joins us-
inp. seeded trees. In Proc. SIGMOD Intl. Conf: on
M&agement of Data, pages 209-220, 1994. .

M.-L. Lo and C. V. Ravishankac Generating
seeded trees from data sets. In Proc. International
Symp. on Large Spatial Databases, 1995.

M.-L. Lo and C. V. Ravishankar. Spatial hash-
joins. In Proc. SIGMOD Intl. ConJ: on Manage-
ment of Data, pages 247-258, 1996.

[McC85]

[NBC+941

[NHS84]

[OM88]

[Ore861

[Ore891

[Ore901

[PD96]

[PS85]

m@01

[Rot911

[Sam891

[SRF87]

[Tig92]

[Ube94]

[Va187]

[Ven94]

[Ven95]

[VV96]

E.M. McCreight. Priority search trees. SIAM Jour-
nal of Computing, 14(2):257-276, 1985.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray,
and D. Lomet. AlphaSort: A RISC machine sort.
In Proc. SIGMOD Intl. Conj on Management of
Data, pages 233-242, 1994.
J. Nievergelt, H. Hinterberger, and K.C. Sevcik.
The grid file: An adaotable, symmetric multikev
file srmcture. ACM Tr&sact;on’s on Database Syi-
terns, 9(1):257-276, 1984.

J. A. Orenstein and F. A. Manola. PROBE spatial
data modeling and query processing in an image
database application. IEEE Transactions on Soft-
ware Engineering, 14(5):61 l-629, 1988.

J. A. Orenstein. Spatial query processing in an
object-oriented database system. In Carlo Zaniolo,
editor, Proceedings of the 1986 ACM SIGMOD In-
ternational Conference on Management of Data,
pages 326-336, 1986.
J. A. Orenstein. Redundancy in spatial databases.
SIGMOD Record (ACM Special Interest Groun on
Management of Data), 18’(2):294-305, June 1’989.
J. A. Orenstein. A comparison of spatial query
processing techniques for native and parameter
spaces. JIGMOD-Record (ACM Special Interest
Group on Mananement of Data), 19(2):343-352,
June ‘1990. - ”

J. M. Pate1 and D. J. Dewitt. Partition based
spatial-merge join. In Proc. SIGMOD Intl. Cot$
on Management of Data, pages 259-270, 1996.
F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag.
1985.
W. Pugh. Skip lists: A probabilistic alternative
to balanced trees. Communications of the ACM,
33(6):668-676, June 1990.
D. Rotem. Spatial join indices. In International
Conference on Data Engineering, pages 500-509,
1991. IEEE Computer Society Press.

H. Samet. The Design and Analyses of Spatial
Data Structures. Addison Wesley, MA, 1989.
T. Sellis, N. RoussopouIos, and C. Faloutsos. The
R+-tree: A dynamic index for multi-dimensional
objects. In Proc. IEEE International Con5 on Very
Large Databases, 1987.
Tiger/line files (tm), 1992 technical documenta-
tion. Technical report, U. S. Bureau of the Census.
M. Ubell. The montage extensible datablade ar-
chitecture. In Proc. SIGMOD Intl. Con5 on Man-
agement of Data, 1994.

Patrick Valduriez. Join indices. ACM Transactions
on Database Systems, 12(2):218-246, June 1987.

D. E. Vengroff. A transparent parallel I/O environ-
ment. In Proc. 1994 DAGS Symposium on Parallel
Computation, 1994.

D. E. Vengroff. TPIE User Manual and Ref-
erence. Duke Universitv. 1995 with sub-
sequent revisions. Available via WWW at
http://www.cs.duke.edu/TPIE.

D. E. Vengroff and J. S. Vitter. I/O-efficient sci-
entific computation using TPIE. In Proceedings of
the Goddard Conference on Mass Storage Systems
and Technologies, NASA Conference Publication
3340, Volume II, pages 553-570, 1996.

581

