Architecture and Database Interfaces

Donald Kossmann

Outline

- 1. SAP's Client-server Architecture
- 2. Overview of the SAP Schema
- 3. Transaction Processing
- 4. Benchmarks and Results

SAP's Three-Tier Client-Server Architecture

presentation servers: control GUI

- application servers: carry out ABAP programs and DynPros
- **RDBMS:** stores all the data (including ABAP programs, DynPros, data dictionary, etc.)

 $\mathbf{2}$

dvantages of Three-Tier Architectures

- <u>+</u> Scalability. Add machines in middle tier to support more users
- \mathbf{N} Portability. It is possible to use different platforms at all levels
- ယ platform to integrate Interoperability and and interact openness. with third-party Middleware serves products as
- 4 Nice Word, GUIs. Excel, etc Presentation servers can interact with Microsoft

SAP R/3 Configurations

tiny: 1 user

- all three layers on one machine
- one of the SAP founder's golf club is run by R/3 on a laptop

small: about 10 users

- PCs for presentation
- application and database server on one (mid-range) machine
- Ethernet

Serious SAP R/3 Configurations

medium: about 100 users

- PCs, notebooks, other workstations for presentation
- a couple of machines for application servers;
- one (fairly big) database server machine;
- Ethernet for local PCs;

big: more than 1000 users

- PCs, notebooks, other workstations for presentation;
- several machines for application servers;
- a mainframe/multi-processor machine for the database
- FDDI

Additional Gimmicks

- usually, installations have separate machines for tests
- standby database server machine is recommended
- ISDN, DATEX-P, and special links to technical subsystems (e.g., sensors) are also very common

Supported Platforms

8

Presentation Layer

- Windows 3.1, Windows 95, Windows NT
- Java
- OSF/Motif
- OS/2
- Macintosh
- in the long run, only Windows and Java are going to be supported

Operating Systems for Application

Servers

- AIX, Digital Unix, HP-UX, SINIX. SOLARIS
- Windows NT
- OS/100 (for IBM AS/400)

• DB2 Common Server, DB2 for AS/400, DB2 for OS/390	• Informix Online	• Oracle	MS SQL Server	• (ADABAS D: only support for old installations)	Hardware	• Bull, IBM, SNI, SUN, Digital, HP for UNIX platforms	• many, many for Windows NT	• IBM AS/400	• IBM S/390	Communication Protocols	• TCP/IP	• LU 6.2 (for IBM mainframes)
	С)ve	rvi	ew o	f the	SAP	Sc	che:	ma			
• R/3	has	more	e tha	ın 10,00	0 pre-de	efined ta	bles	(Vers	sion 3	B.x)		
— ta	ables	s for	data	usuch as	s custon	ners, ord	ers ,	etc.				
— ta	ables	s for	stati	istics (m	nonitori	ng the sy	vsten	ı)				

10

- tables for authorization
- ...

Database Systems

- comprehensive, generic schema for any kind of conceivable business rather than greatest common denominator
- fully normalized, (almost) no redundancy
 - good for OLTP
 - bad for OLAP (as we will see)
- users can also define their own tables

- three different kinds of SAP tables

transparent: mapped 1:1 to RDBMS tables

pool: mapped n:1 to RDBMS tables motivation: in the 80s, some RDBMS products limited the total number of tables

cluster: mapped n:1 to RDBMS tables so that related tuples of several cluster tables are stored in one row of the RDBMS table

motivation: sometimes good during transaction processing

Trend: make all tables transparent

Examples

1. All *comments* and *descriptions* need to be stored in separate tables in order to keep information in different languages:

 $part(id, ..., comment) \Rightarrow \frac{part(id, ...)}{comment(partid, language, comment)}$

N.B.: Actually, SAP tables come with names such as *KONV*, *STXL*, *VBAP*, *VBEP*, etc. Keys span several attributes (including business unit, etc.)

2. Generic way of dealing with pricing terms (customizable):

lineitem(<u>id</u>, ..., tax, discount) \Rightarrow $\lim_{\substack{i \in I, \dots, pricing_term_id}} \lim_{\substack{i \in I, \dots, pricin$

- tax and discount are stored in two different tuples (additional pricing_terms stored in additional tuples)
- to allow quick access, pricing_term tuples that belong to the same lineitem are clustered together (i.e., *pricing_terms* is a cluster table)

Schema: Observations

- SAP databases tend to be very large (due to genericity)
- Schema is the heart of SAP, but still under constant revision
 - a couple of thousand new tables with every new major release
 - a great deal of reorganization work with every upgrade

SAP's Transaction Concept

- SAP uses the term *Logical Unit of Work* (LUW) for transaction.
- Basically, an SAP LUW has the same ACID properties as SQL and any (SQL) database system:
 - an SAP LUW can span several dialog steps
 - an SAP LUW is either executed completely or not at all (i.e., atomicity)

- ...

- nested transactions are also possible

Overview of Implementation

- SAP LUWs are NOT mapped 1:1 to database transactions
- SAP implemented its own locking (centralized *enqueue service*)
- basically, SAP also implemented its own TP monitor (*message handler* and *queues* in every application server)
- online transactions and batch (overnight) queries possible
- (for comparison: PeopleSoft uses third-party TP monitors such as Tuxedo)

Application Server

Processing Dialog Steps

- when a user logs in, a message handler finds the application server with the smallest load (load balancing)
- 2. this application server handles all of the requests of that user session
- 3. a user session consists of several transactions, and every transaction consists of several dialog steps
- 4. every application server has one dispatcher process and several work processes
- 5. the dispatcher queues requests until a work process is available
- a work process carries out a dialog step; rolls in relevant data and interprets DynPro and ABAP programs
- 7. so, every user session is handled by a single application server, but every dialog step is handled by different work processes
- 8. exception: transactions that involve large objects have exclusive work processes to avoid cost of rolling data in and out

- log records for updates are generated as part of every dialog step
- log records are propagated to RDBMS in posting phase
- locks are requested during online phase and released after the posting phase is complete (2-phase locking)
- like dialog steps, posting steps are handled by different work processes (potentially in parallel)

Why doesn't SAP directly use the RDBMS?

• Typical RDBMSs do not allow transactions that cross process boundaries.

(This is necessary in SAP because the dialog steps of an LUW can be handled by different work processes)

- aborts are quite frequent (e.g., out of stock) and only carried out before posting; as a result, no roll-back at the RDBMS, the bottleneck, is required for aborts
- SAP carries out locking in the granularity of "business objects" which are defined in the ABAP dictionary

Overview

- SAP's application servers cache ABAP programs, constraints, and operational data in order to reduce the load of the RDBMS.
- $\bullet\,$ more than 90% cache hits are not unusual for SAP applications
- ABAP programs and constraints are always cached.
- Administrator decides which data to cache and in which way to cache it:
 - data that is frequently updated should not be cached at all
 - huge data that is likely to flood the cache should not be cached either
 - default settings for pre-defined tables help

Caching Examples

- *REGION* table is a classic candidate for caching
- *LINEITEM* table is a classic candidate for NOT caching

Application servers can cache data three different granularities (set by default or system administrator for every table):

- 1. complete caching of a table
 - cache can be used for any query on that table
 - need much cache space, high cost to propagate updates
- 2. tuple-wise caching
 - cache only used for **select single** statements
 - fine-grained: i.e., good cache utilization, low cost in the presence of updates
- 3. generic caching (a compromise)
 - cache all tuples of a table with the same value of a prefix of the primary key
 - e.g., cache all tuples that belong to the same business unit

Cache consistency in configurations with several application servers

- periodic propagation
- no guarantee for cache coherency
- however, *in practice* not a problem because only data that is almost never updated is cached or data for which inconsistencies don't matter that much

- again, SAP implements its own authorization model and does not use the standard (SQL) model supported by the RDBMS
- users must log in with their user-id and password (identification)
- fine-grained and flexible authorization concept
 - individual fields of tables
 - specific transactions and/or reports
 - views
- bundling of authorizations
 - authorization object (set of related authorizations)
 - authorization profile (set of authorization objects; roles)
 - group profile (set of authorization profiles)
- users belong to groups and inherit group authorizations

Security

- activity logs
- encryption of all messages exchanged between RDBMS and application servers
- Kerberos and SecuDE for secure clients at the presentation layer
- secure transport system for batch input and migration of databases
- only the administrator has direct access to the database and file system; everybody else must use the interfaces of the presentation layer or other external services in order to work with the system

 26

- SAP monitors the following parameters
 - queue lengths in dispatcher
 - cache hit ratio
 - database operations (scans, sorts, joins)
 - ABAP operations (sorts, etc.)
 - number of commits and rollbacks
 - CPU, disk, memory, network utilization
 - response time of dialog steps, work processes, database calls
- alerters inform administrators if problems occur
- performance statistics are stored in the database
- EarlyWatch service (Big Brother is Watching You)

SAP Transaction Processing Benchmarks

- defined in 1993 (Release 1.1H)
- purpose of these benchmarks:
 - sizing of an SAP system
 - measure real SAP application operations
 - key for database systems certification
- seven dialog benchmarks (FI, MM, SD, PP, PS, WM, ?)
- two batch benchmarks (AA, HR)
- most popular benchmark is SD benchmark
- usually run by hardware vendors (SAP benefits from their competition)

The SD Benchmark

(Sales and Distribution)

Set Up (common to all benchmarks)

- one presentation server simulates users of several business units
- to avoid lock contention, maximum 100 users per business unit
- <u>central configuration</u>: one machine for application server and RDBMS
- distributed configuration: n machines for application servers, another machine for RDBMS

SD Benchmark Script

- 1. create an order with five line items
- 2. create a delivery for this order
- 3. display the customer order
- 4. change the delivery and post goods issue
- 5. list forty orders
- 6. create an invoice
- 15 dialog steps; 4 posting steps; 150 secs think time

SUN Beaverton, CA, USA on March 11, 1997: Number of benchmark users: 1,410 SD Average dialog response time: 1.85 seconds 7,133 SAPS (428,000 dialog steps/h) Throughput: Equivalent to: 143,000 processed order line items per hour Average DB request time: 0.397 secs (dialog), 0.397 secs (update) CPU utilization: 94%Solaris 2.5.1 Operating System: **RDBMS**: Informix Online Server 7.21 UC1 R/3 Release: 3.0E (with 3.0F kernel) 350 GBTotal disk space:

1 Central Server: 64-way UltraSparc II CPU's 250 MHz, 14 GB main memory, 1 MB level 2 cache; 15 dialog/update instances, 1 message/enqueue instance

Certification Number: 1997007

hardware vendors have solved many of SAP's performance problems concerning transaction processing.

- R. Buck-Emden and J. Galimow: SAP R/3 System A Client/Server Technology. Addison-Wesley, 1996.
- J. Doppelhammer, T. Höppler, A. Kemper, and D. Kossmann: Database Performance in the Real World – TPC-D and SAP R/3. ACM SIGMOD, 1997.
- B. Lober and U. Marquard: R/3 System Standard Application Benchmarks. http://www.sap-ag.de/products/techno/index.htm
- B. Lober: R/3 System Standard Application Benchmarks Published Results, Version 2.4. http://www.sap-ag.de/products/techno/index.htm
- SAP AG: Online Documentation. 1996-1998.
- SAP AG: SAP R/3 Software Architektur. 1994.

Queries and OLAP Applications on SAP R/3

Alfons Kemper

Outline

- Query interfaces of SAP R/3
- Decision Support Queries on SAP R/3
- SAP Data Warehouse Products

35

 34

- all business data is entered via OLTP-applications into SAP R/3
- SAP has its own predefined schema
- SAP R/3 is used to ask queries, e.g.:
 - for finding particular information as part of OLTP processing: what happened to a particular order issued by customer 'Smith' in March 1998
 - for generating business reports for decision support:
 how did our new line of products sell in different regions over the last six months
- SAP R/3 has many predefined business reports that can be invoked "by the click of the mouse"
- SAP R/3 also allows to "program" customized queries/reports

Query Interfaces of SAP R/3

SAP R/3

Open SQL

- SQL-92 style syntax (some limitations!)
- built-in operators, such as SORT
- materialize temporary results
- caching of query results
- cursor caching to optimize repeated database access
- in recent versions SAP has significantly improved the database interface
- before Version 3.0 it was not possible to "push" a join to the database server; it had to be implemented as nested SFW's within the ABAP-processor (i.e., within the application server).

Open SQL versus Native SQL-cont'd

Native SQL

- bypass ABAP/4 processor (and caching)
- bypass SAP data dictionary
- therefore not possible to access non-transparent tables
- advantage: often better performance
 - exploit (non-standard) features of the RDBMS
 - avoid certain problems of the ABAP processor
- disadvantage: not portable and potentially unsafe
 - cannot use different RDBMSs
 - programmer needs expert knowledge
- \Rightarrow SAP recommends use of Open SQL
 - all built-in business applications use Open SQL

- use of the TPC-D Benchmark
- results were reported in: Jochen Doppelhammer, Thomas Performance in the Real World - TPC-D and SAP R/3Höppler, Alfons Kemper, Donald Kossmann: Database (Experience Paper). SIGMOD Conference 1997: 123-134
- load data into SAP's predefined tables
- wrote 17 TPC-D queries in a) Native SQL and b) Open SQL
- facility implemented 2 update functions using SAP R/3's batch input
- Sun Sparc Station with 2×60MHz processors, 256 MB main memory, 5×4 GB disks, commercial RDBMS as back-end
- for comparison: we implemented the "original" TPC-D hardware and the same configuration benchmark directly on commercial RDBMS using the same

SF*200k	SF*800k	SF*6000k	SF*1500k
PARTKEY	PARTKEY	ORDERKEY	ORDERKEY
integer	integer	integer	integer
NAME	SUPPKEY	PARTKEY	CUSTKEY
char 55	integer	integer	integer
MFGR	AVAILQTY	SUPPKEY	ORDERSTATUS
char 25	integer	integer	char 1
BRAND	SUPPLYCOST	LINENUMBER	TOTALPRICE
char 10	decimal	integer	decimal
TYPE	COMMENT	QUANTITY	ORDERDATE
varchar 25	varchar 199	decimal	date
SIZE		EXTENDEDPRICE	ORDERPRIORIT
integer	CUSTOMER (C)	decimal	char 15
CONTAINER	SF*150k	DISCOUNT	CLERK
char 10	CUSTKEY	decimal	char 15
RETAILPRICE	integer	TAX	SHIPPRIORITY
decimal	NAME	decimal	integer
COMMENT	char 25	RETURNFLAG	COMMENT
varchar 23	ADDRESS	char 1	varchar 79
,	varchar 40	LINESTATUS	
IIPPITER (S)	NATIONKEY	char 1	
SE*102	linteger	SHIPDATE	
SUPPKEY	PHONE	date	
integer	char 15	COMMITDATE	
NAME	ACCTBAL	date	
char 25	decimal	RECEIPTDATE	
ADDRESS	MKTSEGMENT	date	
varchar 40	char 10	SHIPINSTRUCT	
NATIONKEY	COMMENT	char 25	
integer	varchar 117	SHIPMODE	
DHONE	varonar 11,	char 10	
char 15	NATION (N_)	COMMENT	
ACCTRAL	25	varchar 44	
decimal	NATIONKEY		
COMMENT	integer	PECTON (P)	
Varghar 101	NAME	REGION (R_)	
Valenai 101	char 25	DECTONKEY	
	REGIONKEY	integer	
	integer	NAME	
	COMMENT	char 55	
	varchar 152	COMMENT	
		COMMENT	

The TPC-D Database Schema

SAP Table	Description	Orig. TPC-D Tab.
T005	Country: general info	NATION
T005T	Country: Names	NATION
T005U	Regions	REGION
MARA	Parts: general info	PART
MAKT	Parts: description	PART
A004	Parts: terms	PART
KONP	Terms: positions	PART
LFA1	Supplier: general info	SUPPLIER
EINA	Part-Supplier: general info	PARTSUPP
EINE	Part-Supplier: terms	PARTSUPP
AUSP	properties	PART, SUPP, PS.
KNA1	Customer: general info	CUSTOMER
VBAK	Order: general info	ORDER
VBAP	Lineitem: position	LINEITEM
VBEP	Lineitem: terms	LINEITEM
KONV	Pricing Terms	LINEITEM
STXL	Text of comments	all

• 8 tables in the TPC-D schema versus 17 tables in SAP R/3

42

Size of Database in KB (SF = 0.2)

	Original	SAP DB
	TPC-D DB	$(Version \ 2.2)$
Data	$271,\!139$	$2,\!813,\!216$
Indexes	$102,\!822$	$841,\!008$

Why is SAP database so big?

- SAP keeps info which is not modelled in the TPC-D benchmark
 - given default values in our experiments
- (strong) partitioning of the database tables
 - space to store foreign keys
- in SAP, keys (e.g. Customer-No) are 16 byte strings.
- in original TPC-D benchmark, keys are 4 byte integers.

TPC-D Power Test

	BNAUS	Native COL	Open SOT
Tindata		(SAP DR)	(SAP DR)
Opuare			
Q1	om Uys	58m 59S	50m 18S
Q2	53s	3m~09s	34s
Q3	4m~03s	$9 \mathrm{m} \ 02 \mathrm{s}$	11m 51s
Q4	1m~45s	6m 18s	6m 38s
Q5	6m 39s	14m $42s$	$37m\ 27s$
Q6	1m~20s	7m~28s	14m 06s
Q7	9m~03s	23m 05s	29m 24s
Q8	1m~54s	19m 04s	16m 37s
Q 9	8m~42s	31m $33s$	1h 7m 14s
Q10	5m 18s	33m 06s	57m~49s
Q11	5s	4m $37s$	$2m\ 23s$
Q12	3m 15s	9m 48s	9m~36s
Q13	8s	19s	25s
Q14	6m~23s	$10m\ 25s$	21m $54s$
Q15	3m~25s	13m $51s$	28m 31s
Q16	13m~24s	3m 16s	3m~22s
Q17	11s	1m 50s	2m 13s
UF1	1m 40s	1h 46m 54s	1h 46m 54s
$\mathrm{UF2}$	1m 48s	11m $35s$	11m 35s
Total (quer.)	1h 12m 37s	4h 10m 32s	$6h \ 06m \ 22s$
Total (all)	1h 16m 05s	$6\mathrm{h}~09\mathrm{m}~01\mathrm{s}$	8h 04m 51s

 more details (all queries in Open and Native SQL): http://www.db.fmi.uni-passau.de/projects/SAP/

Loading Time for the Benchmark Data (SF = 0.2)

	Loading Time
REGION	
NATION	
SUPPLIER	18m
PART	15h 56m
PARTSUPP	30h 24m
CUSTOMER	$7\mathrm{h}~33\mathrm{m}$
ORDER+LINEITEM	25d $19h$ $55m$

- in all, it took about 1 month!
- Reasons:
- SAP carries out extensive consistency checks for every record individually
 - SAP R/3 inserts records into the database one-at-a-time rather than making use of the RDBMS bulk load facilities
- it appears to be very difficult (impossible?) to bypass SAP R/3 and insert R/3-consistent data into the RDBMS tables directly

- three (native SQL) to five (Open SQL) times more expensive queries
 - ten times larger database (due to partitioning, large keys, default values)
- partitioning of the data leads to $N \times M$ -way joins versus M-way joins in original TPC-D benchmark
 - Example: Query 1
 - TPC-D: single table scan
 - SAP: Lineitem \bowtie Lineitem \bowtie Lineitem
- updates are very expensive because of the consistency checks; just as for initial loading

Why is Open SQL even more expensive?

- Limitations of Open SQL prohibit "pushing down" certain expensive operations, e.g., complex aggregation
 - increased communication costs between database server and application server
- poor query evaluation plans
 - partly due to RDBMS
 - partly due to SAP R/3
- cannot exploit non-standard features of the RDBMS
 - for example proprietary string manipulation routines
- SAP generates parameterized queries rather than passing constants of selection predicates to the RDBMS optimizer
 - may result in poor optimization choices by the optimizer
 - e.g., choosing an index scan instead of a table scan because the selectivity of a predicate is not known due to param.

47

Conclusions

- Complex queries for decision support are too expensive in SAP $\rm R/3$
- The highly partitioned schema is optimized for OLTP applications, not for OLAP applications
- (Extensive) query processing penalizes the operational OLTP system
- $\Rightarrow\,$ Data Warehouse is the way to go

SAP EIS (Executive Information System)

- SAP's first attempt in data warehousing
- part of the regular R/3 system
- uses the same system (database server and application server) as the OLTP applications
- therefore, incressed load on the OLTP system
- based on a rudimentary star schema
 - a fact table
 - several dimension tables
- however, SAP EIS has limitations: e.g., only three attributes per dimension table

- limitations in query processing
 - only 8 of the 17 TPC-D queries could be expressed in SAP EIS
- the performance of these eight queries improved by a factor of two as compared to the Open SQL reports
- high loading time: about 50 hrs to load the TPC-D database with SF=0.2 from R/3 into EIS
 - even though, EIS was part of the same R/3 system
- merely extracting the TPC-D database from SAP R/3 into ASCII files takes 6 hours

The Business Information Warehouse (BIW)

- SAP's new data warehouse product
- first beta tests; general availability starting in July
- ROLAP architecture (Relational OLAP)
- RDBMS independent, i.e., several RDBMS products are supported as back-end server (developed on Oracle and MS SQL Server)
- bundled with the SAP R/3 system, Version 4.0
- but can also be acquired separately as a stand-alone system
- first SAP stand-alone component (outside of R/3)
- part of SAP's Business Framework
 - $\rightsquigarrow\,$ componetization of R/3
- $\bullet\,$ BIW can handle data extraction from various other systems, not only from SAP R/3 and R/2

The Business Information Warehouse's Role

52

The BIW's Architecture

- open Business Application Programming Interfaces (BAPIs) for
 - data loading: to accommodate the extraction of data from non-SAP systems
 - OLAP processing: e.g., for third party visualization tools
- pre-configured meta data repository: InfoCubes catalog, report catalog, information source catalog
- many pre-defined InfoCubes for common business applications: e.g., market segment analyses, profitability analyses, stock inventory analyses, corporate indicator systems
- predefined extraction routines to obtain this data from R/3 OLTP systems (with incremental updates!)

The Staging of Information

55

- GUI-based
- sophisticated scheduler

InfoCubes: Star Schema

- one normalized fact table
- several dimension tables
 - possibly non-normalized to model hierarchical characteristics
 - e.g., customers' city \rightarrow county \rightarrow country \rightarrow region

• (Handy) Sales by Brand/Year/Country

Relational Representation of an "InfoCube"

Customer Master Data

- slice and dice
- drill down/roll up

Business Analysis Library

- aggregate functions: sum, min, max, average, ...
- comparison functions: difference, ratio, percent,, share, correlation, ...
- sequence functions: top/last n, cumulative sum, tertiles, quartiles, ABC analysis, ...
- \bullet exception conditions: absolute values, top/last n, top/last n%, trends, . . .
 - used to highlight exceptions
- financial functions: currency conversion, business period conversion, ...
 - very important for international enterprises

Performance

- no benchmark results yet
- dedicated server
 - separate from OLTP server
 - can be configured as a three-tier client server configuration (like SAP R/3)
- InfoCube summary levels: precomputed aggregations
- persistent report cache
- batch reports

Literature

- Jochen Doppelhammer, Thomas Höppler, Alfons Kemper, Donald Kossmann: Database Performance in the Real World -TPC-D and SAP R/3 (Experience Paper). SIGMOD Conference 1997: 123-134 http://www.db.fmi.uni-passau.de/projects/SAP/
- SAP-AG: SAP Business Information Warehouse Information Center. http://www.sap-ag.de/products/biw/index.htm
- Rüdiger Kretschmer and Wolfgang Weiss, SAP's R/3 Applications with ABAP/4. Sybex, 1996, Alameda, CA, USA.
- Transaction Processing Performance Council TPC, TPC Benchmark D (Decision Support), Standard Specification 1.0, Transaction Processing Performance Council (TPC), 1995, http://www.tpc.org/