
Enhanced Nearest Neighbour Search on the R-tree

King Lum Cheung and Ada Wai-chee Fu

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Email: adafu@cse.cuhk.edu.hk

Abstract

Multimedia databases usually deal with huge

amounts of data and it is necessary to have an

indexing structure such that e�cient retrieval of

data can be provided. R-Tree with its variations,

is a commonly cited indexing method. In this pa-

per we propose an improved nearest neighbor search

algorithm on the R-tree and its variants. The im-

provement lies in the removal of two hueristics that

have been used in previous R*-tree work, which we

prove cannot improve on the pruning power during

a search.

1 Introduction

Multi-media data is being generated at an enor-
mous rate by a lot of applications. The traditional
database can deal with text data and provides
mechanisms for exact information retrieval. Multi-
media data, such as image data, on the other hand,
is quite di�erent from text data. Many projects
on multimedia databases have been reported e.g.
[6, 13, 8]. For such a database, content-based re-

trieval is typically useful. One major advantage
of content-based retrieval is that it bypasses the
di�cult problem of specifying the desired multi-
media objects in terms of formal query languages.
A popular form of content-based queries employs
the query-by-example paradigm. For example, in a
collection of images, users can use existing images
as query templates and ask the system for images
similar to the query images. This is the so-called
\like-this" query. Alternatively, user can sketch a
picture that serves as the query template.

To support content-based retrieval, often we
have to rely on feature extraction capabilities to
map each domain object into a point in some k-
dimensional space where each object is represented
by k chosen features. An example feature vector
may be the color components of an image or shot
cuts of a video clip. Hence, processing content-
based queries typically requires some measurement
of similarity between k-dimensional points. The
similarity (or distance) between two objects is mea-
sured using some metric distance function over the
k-dimensional space. The most commonmetric dis-
tance function used is probably the Euclidean dis-
tance d(x; y) =

pPn

i=1(xi � yi)2. The entire prob-
lem is then formulated as storing and retrieving k-
dimensional points. In general, these methods are
called Multidimensional Indexing or Spatial Access
Methods (SAMs) [15].

Some examples of SAMs are [10, 16, 1, 7, 5, 4, 12,
17]. Evidence that nearest-neighbor search in high-
dimensional space has inherently high complexity
can be found in [9, 3]. In view of the ine�ciency,
there are attempts to parallelize the processing to
speed up the search [2]. Also there are attempts to
reduce the number of dimensions e�ectively [11].

For many indexing methods, the search struc-
ture is built in the form of a tree. Ine�ciency arises
because a lot of tree nodes have to be accessed in
order to get the desired objects. In this paper, we
discover an enhancement on the nearest neighbor
search algorithm for the R-tree and its variants that
can speed up the CPU processing, while not in-
creasing the amount of disk I/O. The enhanced al-
gorithm eliminates one computationally expensive
step from the previously known algorithm used in
nearest neighbor search [14], while preserving the
same pruning power.
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Figure 1. Example of exact search

2 Searching in R-Trees and R*-
Trees

In this section, we give a brief overview of exact
search and nearest neighbor search on R-trees and
R*-trees. For exact search, we determine whether
a given query object exists in the index tree or not.
If it does, then the object is returned else a fail-
ure message is returned. We assume data objects
are points in the multi-dimensional search space.
In an R-tree or R*-tree, if the minimum bounding
rectangle (MBR) of a node encloses the query ob-
ject, then the node may contain the query object.
Therefore, beginning from the root, a child node
will be accessed if its MBR contains the query ob-
ject, and the top-down traversal will be iterated
until either the leaf level is reached or all minimum
bounding rectangles of child nodes do not enclose
the query. The process will be terminated when
the query object is found, or all nodes whose mini-
mum bounding rectangles enclose the query object
are searched but the required object is not found.
For example, in Figure 1, for an exact search for a
query point Q, the minimum bounding rectangles
for B1, B2, B7, B3, B8, may be searched. On the
contrary, if query point R is to be searched in the
same example, the searching will only examine the
root of tree, B1.

N -Nearest Neighbor search aims at searching
for N objects which are the nearest ones to the
query object among all data objects. The meaning
of nearest usually corresponds to the shortest Eu-

clidean distance. Roussopoulos, Kelley and Vin-
cent in [14] suggested an e�cient nearest neigh-
bor search algorithm on R-tree. In this algorithm,
pruning heuristics are used to discard candidates
subtrees, so that less nodes will be accessed while
the correct result can be guaranteed at the same
time. Two metrics are introduced for the pruning.
The �rst metric,MINDISTA , is the minimumdis-
tance from node A to the query Q = fq1; q2; :::; qng.
It serves as a lower bound on the distance from
the nearest neighbor within the MBR of node A
to the query. That means, if an object P (note
that P is at a leaf node in the R-tree) is near-
est to the query among all objects in node A,
then MINDISTA � DISTP must be true where
DISTP is the distance from P to the query. The
second metric, MINMAXDISTA , is the mini-
mum of maximum possible distances from a point
P to a face of the minimum bounding rectangle
A. MINMAXDISTA serves as an upper bound
of distance of the nearest neighbor in MBR of node
A to the query. Therefore, if P is an object nearest
to the query among all objects in A, then DISTP
� MINMAXDISTA must be true.

Based on these metrics, [14] developed three
heuristics to discard nodes which do not contain
the nearest neighbor. We shall adopt the following
symbols in our discussion.

Symbols De�nition
MINDISTA minimum distance from node A

to the query
MINMAXDISTA minimum of maximum possible

distances from the query point to
a face of the MBR A.

NN DISTN distance from the N -th nearest
neighbor among searched objects
to the query

DISTP distance from the object P to the
query

Heuristic 1 If

MINDISTA > MINMAXDISTB , then node A

will be discarded.

Heuristic 2 If DISTP > MINMAXDISTB ,

then the object P will be discarded.

Heuristic 3 If MINDISTA > NN DISTN ,

then node A will be discarded.
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Let us call the single nearest neighbor search algo-
rithm in [14] Algorithm NN. In this algorithm,
pruning depends on Heuristics 1, 2 and 3 in which
NN DISTN is restricted to NN DIST1 . A gen-
eralization to N -nearest neighbor search is also
described in [14]. The generalized algorithm will
make use of Heuristics 1, 2 and 3 in the pruning
process.

3 An Improved Nearest Neighbor
Search Algorithm for R-Tree

Although the pruning heuristics described in the
previous section can reduce the number of node ac-
cess on an R-tree, extra CPU time overhead is in-
troduced by the process of calculating the two met-
rics. The calculation of MINMAXDIST is compu-
tationally expensive and has a complexity of O(d)
where d is the number of dimensions. Heuristics
1 and 2 make use of MINMAXDIST. The over-
head is large especially when a large amount of
high dimensional data has to be dealt with. It
turns out that these two heuristics do not actu-
ally increase the pruning power, and so calculation
ofMINMAXIST is indeed not necessary. In this
section, an improved algorithm that does not make
use of MINMAXDIST and Heuristics 1, 2 will be
proposed. The new algorithm will be shown to be
as least as powerful as the original one in prun-
ing so that the number of disk accesses during the
searching will not be increased.

As discussed in Section 2, we denote by Al-

gorithm NN the original single nearest neighbor
search algorithm in [14] using Heuristics 1, 2 and 3,
and using MINDIST ordering in the Active Branch
List (see [14]). The improved nearest neighbor
search algorithm is given as Algorithm INN and
is shown in Figure 2. Algorithm INN is similar to
Algorithm NN. The major di�erence between the
new and the original search algorithms is that the
use of Heuristics 1, 2 and 3 have been replaced by
using only Heuristic 3 in the new algorithm.

In the following subsection, we show that the
number of node accesses will not be increased by
the new algorithm by showing that if a node is
pruned by the old algorithm, then it will also be
pruned by the new algorithm. We assume that
node access corresponds to disk access. Once this

ALGORITHM INN:

Procedure NN Search

Input : NODE /* node to be visited */
NN DISTtemp /* distance from temporary

nearest neighbor to the query */
Begin

If current node P is at leaf level
Then

If DISTP < NN DISTtemp

Set current node to be nearest neighbor
Update NN DISTtemp

Else

Generate Active Branch List of NODE
CalculateMINDIST

Sort the Active Branch List by ascending
ordering of MINDIST

For i := 1 to no. of entries in the Active Branch List
Apply Heuristic 3 to do pruning
Call NN Search

End

Figure 2. New nearest neighbor search al-
gorithm for R-tree

is established, we can see that with the new al-
gorithm, the computational cost can be decreased
without increasing the amount of disk accesses.

3.1 Efficiency of Algorithm INN

The following lemmas help to establish the e�-
ciency of the new Algorithm INN.

Lemma 1 If P is the nearest neighbor among all

objects in node A to the query Q, then

MINDISTA � DISTP �MINMAXDISTA .

Proof: By de�nition, MINDISTA is the mini-
mum distance from A to the query Q. From the
minimal bounding region face property shown in
[14], if P is an object nearest to the query among all
objects in A, then DISTP � MINMAXDISTA .
Therefore, MINDISTA and MINMAXDISTA
serve as a lower bound and a upper bound to the
distance from the nearest neighbor in node A to
the query respectively. 2

Lemma 2 If A is an ancestor node of B in a R-

tree, then MINDISTA �MINDISTB .
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Proof : This follows from the de�nition of
MINDIST . 2

We assume that in both algorithms, a tight-
est upper bound on the distance to the near-
est object discovered so far is kept in a variable
NN DISTtemp . Next we show that if a node is
pruned by the heuristics in Algorithm NN, then it
will also be pruned by Algorithm INN.

The �rst heuristic to be considered is Heuris-
tic 2. Heuristic 2 says that if DISTP is greater
than MINMAXDISTA , then the object P will
be discarded. Note that no node access is saved in
this case, since the discarded object P is already
searched. (E�ectively, if P is the nearest object dis-
covered so far, then the NN DISTtemp is updated
to be MINMAXDISTA .) Since we are interested
here only in the reduction of node access, Heuris-
tic 2 need not be considered. The second heuristic
we consider is Heuristic 3. Heuristic 3 says that
if NN DIST1 is smaller than MINDISTA , then
node A will be discard.

Lemma 3 If a node is pruned by Heuristic 3 us-

ing Algorithm NN, it can be also be pruned by Al-

gorithm INN.

Proof: Assume that during the execution of
Algorithm NN, there is a node A such that
MINDISTA > NN DISTtemp , so that node
A will be pruned by Heuristic 3. Note that
NN DISTtemp is obtained either from a searched
object P so that NN DISTtemp = DISTP , or
from the MINMAXDIST of a MBR that con-
tains an object P such that NN DISTtemp �
DISTP . That is, we know that MINDISTA >

DISTP . Next suppose Algorithm INN is used,
there are three possibilities:

Case 1: Node P is pruned (we say that a node
P is pruned if either it is pruned or an ancestor
node of P is pruned). Since P and A have a com-
mon root, and A is not the root, then an ancestor
of P must be searched before A, let this ancestor
be C. By Lemma 2, the ancestor C must have
a MINDIST smaller than DISTP , and also the
nodes in the path in the tree from C to P must
all have MINDIST smaller than DISTP . If P is
pruned before being searched, then A would also
be pruned since the pruning is via Heuristic 3, and

A has a greater MINDIST than P 's ancestors.

Case 2: Node P is searched after node A

is searched. A basic depth-�rst traversal with
MINDIST ordering is followed in the nearest
neighbor search for both algorithms, and since P is
searched before A in Algorithm NN, it is not possi-
ble that A is searched before P in Algorithm INN.
Therefore, this case cannot happen.

Case 3: The object P is searched before node A is
either searched or pruned. Hence P has been con-
sidered as a possible candidate for the temporary
nearest neighbor. Let NN DISTtemp be the dis-
tance of the nearest neighbor discovered immedi-
ately before the search of node A. Since updates in
the temporary nearest neighbor can only get closer
to the query point, NN DISTtemp � DISTP must
be true. Since MINDISTA > DISTP , has been
given, NN DISTtemp < MINDISTA can be de-
rived and the node A will be pruned by Heuristic
3. 2

It remains to show that every node which is
pruned by Heuristic 1 in Algorithm NN will also
be pruned by Algorithm INN. In order to do so,
we would make use of the following lemmas.

Lemma 4 If there are two nodes A and B with the

condition MINDISTA �MINDISTB , then

MINMAXDISTB 6< MINDISTA .

Proof: From Lemma 1, MINDISTB �
MINMAXDISTB must be true for all nodes
B. Since the precondition MINDISTA �
MINDISTB is provided, we haveMINDISTA �
MINDISTB � MINMAXDISTB . Hence
MINMAXDISTB 6< MINDISTA . 2

Lemma 5 If a node B is searched before a sibling

node A using Algorithm INN, and

MINMAXDISTB < MINDISTA ;

then the distance of the temporary nearest neighbor,

NN DISTtemp , just before A is either searched or

pruned is less than or equal to MINMAXDISTB .

Proof : Let � be the set of nodes that are
searched after B and before the search or prun-
ing of A. (We say that A is pruned when either it
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is pruned or an ancestor node of A is pruned.) Let
BC be the object in B that is closest to the query
point. There are two possible cases:

Case 1: BC is in �. In this case, BC has been
considered as a candidate for the temporary near-
est neighbor, then since we know that its distance
is less than or equal to MINMAXDISTB , hence
NN DISTtemp �MINMAXDISTB .

Case 2: BC is not in �. Since DISTBC �
MINMAXDISTB < MINDISTA , by Lemma 1
and 2, all ancestor nodes ofBC haveMINDIST <

MINDISTA . As BC is not in �, one ancestor node
of B, let it be B0, must have been in � and has been
pruned by Heuristic 3. That is, node B0 is dis-
carded because MINDISTB0 > NN DIST 0

temp .
Hence NN DISTtemp < MINDISTB0 �
MINMAXDISTA . 2

Lemma 6 If a node is pruned by Heuristic 1 using

Algorithm NN, it will be pruned by Algorithm INN.

Proof: Heuristic 1 says that if MINDISTC
is greater than MINMAXDISTD then node C
is discarded. Without loss of generality, suppose
there are two nodes A and B so that Node A is dis-
carded by Heuristic 1 because of Node B in Algo-
rithm NN. Hence A and B are sibling nodes (in the
same active branch list) andMINMAXDISTB <

MINDISTA . There are three cases to consider:

Case 1: MINDISTA �MINDISTB .

According to Lemma 1, we have inequal-
ities MINDISTA � MINMAXDISTA and
MINDISTB � MINMAXDISTB . Since
MINDISTA � MINDISTB , by Lemma 4, we
have MINMAXDISTB 6< MINDISTA . There-
fore, it is impossible that MINMAXDISTB <

MINDISTA so that node A is pruned by Heuris-
tic 1.

Case 2: MINDISTA > MINDISTB , and Node
A is searched before node B in Algorithm INN.
This is not possible since the search is ordered by
the values of MINDIST .

Case 3: MINDISTA > MINDISTB , and node

B is searched before node A. Let NN DISTtemp
be the distance of the temporary nearest neigh-
bor just before A is either searched or pruned. By
Lemma 5,

NN DISTtemp �MINMAXDISTA

Since the condition
MINMAXDISTB < MINDISTA is given, the
relation

NN DISTtemp < MINDISTA

can be derived from the above inequalities. There-
fore, node A will be pruned by Heuristic 3.

The above show that all nodes pruned by Heuristic
1 in Algorithm NN will be pruned by Algorithm
INN. 2

Theorem 1 If node access corresponds to disk ac-

cess, then Algorithm INN requires no extra disk ac-

cess compared to Algorithm NN.

Proof: Under our assumption, for a given R-
tree, disk access is required if a node is searched for
the �rst time. Hence the theorem follows directly
from Lemmas 3 and 6. 2

3.2 N-Nearest Neighbor Search

An improved N -nearest neighbor algorithm for
the R-tree can be derived based on the new single
nearest neighbor search algorithm, Algorithm INN.
In the algorithm, we shall store a list of up to N
nearest neighbors. The search is started from the
root node. The current node will �rst be checked
to see whether it is at the leaf level or not. If it is
a leaf, then its distance to the query will be calcu-
lated, and if the distance is less than the distance
from the N th nearest neighbor discovered so far,
NN DISTN , we insert the object into the nearest
neighbor list and then NN DISTN is updated if
necessary. On the other hand, if the current node
is not at the leaf level, then the Active Branch List
for further search will be generated. The Active
Branch List is a list which contains all child nodes
of current node that will be accessed in order to get
the nearest neighbors. The Active Branch List is
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sorted by ascending order of MINDIST . Next, it
iterates through the Active Branch List and recur-
sively access child nodes by calling NN Search. In
NN Search pruning will be performed by apply-
ing Heuristic 3. Therefore, the pseudo-code for the
algorithm will be very similar to that of Algorithm
INN, except we would replace NN DISTtemp by
NN DISTN , which is the distance of the query
point to the N -th nearest neighbor that have been
found so far.

The proof of the e�ciency of the modi�ed N -
nearest neighbor search algorithm will be similar
to that for the single nearest neighbor case.

4 Conclusion

The commonly used content-based index struc-
tures of R-tree and R*-tree are studied. An en-
hanced nearest neighbor search algorithm have
been derived. It is shown that the new algorithm
can preserve the pruning power of the original al-
gorithm while reducing computational cost.
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